matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStochastikbinomial annähern mit normal
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Stochastik" - binomial annähern mit normal
binomial annähern mit normal < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

binomial annähern mit normal: Ableitung der faustformel
Status: (Frage) beantwortet Status 
Datum: 11:51 Mo 20.05.2013
Autor: maximo

Hi!
Ich halte eine Präsentation über die Annäherung der Binomialverteilung mithilfe der Normalverteilung. Hierfür gibt es ja bekannterweise 2 Faustformeln. Diese lauten: np(1-p)größer/gleich 9 und die zweite mir bekannte: sigma > 3. Meine Frage nun lautet woher diese sich allerdings ableiten, da diese Frage im Kolloquium ziemlich sicher gestellt werden wird und ich mir aber nicht erklären kann.
Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt: http://www.matheboard.de/thread.php?threadid=521930

        
Bezug
binomial annähern mit normal: Antwort
Status: (Antwort) fertig Status 
Datum: 12:11 Mo 20.05.2013
Autor: Diophant

Hallo und

[willkommenvh]

> Hi!
> Ich halte eine Präsentation über die Annäherung der
> Binomialverteilung mithilfe der Normalverteilung. Hierfür
> gibt es ja bekannterweise 2 Faustformeln. Diese lauten:
> np(1-p)größer/gleich 9 und die zweite mir bekannte: sigma
> > 3.

Mach dir mal als allererstes klar, dass diese beiden Regeln äquivalent sind, es handelt sich also um eine Regel (->Varianz der Binomialverteilung!).

> Meine Frage nun lautet woher diese sich allerdings

> ableiten, da diese Frage im Kolloquium ziemlich sicher
> gestellt werden wird und ich mir aber nicht erklären
> kann.

Das ist eine viel diskutierte Frage. Meiner Kenntnis nach weiß darauf niemand so genau Bescheid, irgendwann war sie da, letztendlich ist es wohl ein Erfahrungswert. Genau weiß ich es auch nicht, und stelle deine Frage daher mal auf 'teilweise beantwortet'.

Gruß, Diophant

Bezug
                
Bezug
binomial annähern mit normal: Dankeschön
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:42 Mo 20.05.2013
Autor: maximo

Hallo Diophant,
dass die beiden äquilvalent sind hatte ich mir gedacht war mir aber auch nicht ganz sicher daher schonmal danke dafür. ;) Dass es keine richtige Antwort auf diese Frage gibt habe ich jetzt mit der Zeit auch feststellen müssen, allerdings hilft es mir auf jeden fall ungemein zu wissen, dass es wirklich nicht DIE Antwort gibt und nicht nur ich falsch recherchiert habe. :) Der punkt mit den Erfahrungwerten erscheint mir sehr realistisch. Wenn die Frage aufkommt werde ich sie wahrscheinlich damit beantworten und versuchen das ganze noch ein bisschen auszuschmücken ;D
Vielen Dank nochmal

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]