matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare Algebrabilineare Abbildung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Lineare Algebra" - bilineare Abbildung
bilineare Abbildung < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

bilineare Abbildung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:00 So 15.05.2005
Autor: gymnozist

Hallo.
V ist ein Vektorraum, f: V ---> [mm] V^{*} [/mm] lineare Abbildung
Ich weiß, dass eine bilineare Abbildung [mm] \beta [/mm] = [mm] \beta_{f}: [/mm] V x V ----> K durch die folgenden Rechenregeln erfüllen muss:
1. [mm] \beta(v,\lambda_{1}w_{1} [/mm] + [mm] \lambda_{2}w_{2}) [/mm] = [mm] \lambda_{1}\beta(v,w_{1})+\lambda_{2}\beta(v,w_{2}) [/mm]
2. [mm] \beta(\lambda_{1}v_{1}+\lambda_{2}v_{2},w) [/mm] = [mm] \lambda_{1}\beta(v_{1},w) [/mm] + [mm] \lambda_{2}\beta(v_{2},w) [/mm]

Ich soll jetzt beweisen, dass die Rechenregeln gelten, wenn [mm] \beta(v,w) [/mm] = f(v)(w) ; v,w [mm] \in [/mm] V; gilt.

Reicht es da zu zeigen:
1. [mm] \beta(v,\lambda_{1}w_{1} [/mm] + [mm] \lambda_{2}w_{2}) [/mm] = [mm] f(v)(\lambda_{1}w_{1} [/mm] + [mm] \lambda_{2}w_{2}) [/mm] = [mm] f(v)(\lambda_{1}w_{1})+f(v)(\lambda_{2}w_{2}) [/mm] = [mm] \lambda_{1}f(v)(w_{1}) [/mm] + [mm] \lambda_{2}f(v)(w_{2}) [/mm] = [mm] \lambda_{1}\beta(v,w_{1}) [/mm] + [mm] \lambda_{2}\beta(v,w_{2}) [/mm]
Analog bei 2.
???

Ich soll auch zeigen, dass es zu jeder bilinearer Abbildung [mm] \beta: [/mm] V x V ---> K eine lineare Abbildung f: V ---> [mm] V^{*} [/mm]  mit [mm] \beta [/mm] = [mm] \beta_{f} [/mm] gibt.
Hier weiß ich gar nicht wie ich anfangen soll! Hat da vielleicht jemand einen Tipp?

Danke!

        
Bezug
bilineare Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:55 So 15.05.2005
Autor: Stefan

Hallo Sebastian!

>  V ist ein Vektorraum, f: V ---> [mm]V^{\*}[/mm] lineare Abbildung

>  Ich weiß, dass eine bilineare Abbildung [mm]\beta[/mm] = [mm]\beta_{f}:[/mm]
> V x V ----> K durch die folgenden Rechenregeln erfüllen
> muss:
>  1. [mm]\beta(v,\lambda_{1}w_{1}[/mm] + [mm]\lambda_{2}w_{2})[/mm] =
> [mm]\lambda_{1}\beta(v,w_{1})+\lambda_{2}\beta(v,w_{2})[/mm]
>  2. [mm]\beta(\lambda_{1}v_{1}+\lambda_{2}v_{2},w)[/mm] =
> [mm]\lambda_{1}\beta(v_{1},w)[/mm] + [mm]\lambda_{2}\beta(v_{2},w)[/mm]
>  
> Ich soll jetzt beweisen, dass die Rechenregeln gelten, wenn
> [mm]\beta(v,w)[/mm] = f(v)(w) ; v,w [mm]\in[/mm] V; gilt.
>  
> Reicht es da zu zeigen:
>  1. [mm]\beta(v,\lambda_{1}w_{1}[/mm] + [mm]\lambda_{2}w_{2})[/mm] =
> [mm]f(v)(\lambda_{1}w_{1}[/mm] + [mm]\lambda_{2}w_{2})[/mm] =
> [mm]f(v)(\lambda_{1}w_{1})+f(v)(\lambda_{2}w_{2})[/mm] =
> [mm]\lambda_{1}f(v)(w_{1})[/mm] + [mm]\lambda_{2}f(v)(w_{2})[/mm] =
> [mm]\lambda_{1}\beta(v,w_{1})[/mm] + [mm]\lambda_{2}\beta(v,w_{2})[/mm]

Völlig richtig! Hier nutzt du also die Linearität von $f(v) [mm] \in V^{\*}$ [/mm] aus.

>  Analog bei 2.
>  ???

Stimmt, dort musst du die Linearität von $f$ selbst ausnutzen.
  

> Ich soll auch zeigen, dass es zu jeder bilinearer Abbildung
> [mm]\beta:[/mm] V x V ---> K eine lineare Abbildung f: V ---> [mm]V^{*}[/mm]  
> mit [mm]\beta[/mm] = [mm]\beta_{f}[/mm] gibt.
> Hier weiß ich gar nicht wie ich anfangen soll! Hat da
> vielleicht jemand einen Tipp?

Sicher. Definiere:

$f: [mm] \begin{array}{ccc} V & \to & V^{\*} \\[5pt] v & \mapsto & \beta(v,\cdot) \end{array}$, [/mm]

wobei für festes $v [mm] \in [/mm] V$

[mm] $\beta(v,\cdot) [/mm] : [mm] \begin{array}{ccc} V & \to & \IK \\[5pt] w & \mapsto & \beta(v,w) \end{array}$ [/mm]

sei.

Zeige nun, dass $f$ wohldefiniert ist (also: $f(v) [mm] \in V^{\*}$ [/mm] für alle $v [mm] \in [/mm] V$) und dass $f$ linear ist.

Nach Konstruktion ist klar, dass [mm] $\beta_f=\beta$ [/mm] gilt, denn

[mm] $\beta_f(v,w) [/mm] = f(v)(w) = [mm] \beta(v,\cdot)(w) [/mm] = [mm] \beta(v,w)$. [/mm]

Viele Grüße
Stefan


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]