matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und Reihenbildungsgesetz arith. 2. Ordnu
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Folgen und Reihen" - bildungsgesetz arith. 2. Ordnu
bildungsgesetz arith. 2. Ordnu < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

bildungsgesetz arith. 2. Ordnu: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:50 Sa 02.08.2008
Autor: cmg

Aufgabe
Gegen ist die Zahlenfolge: 1, 5/6, 7/11, 9/18, 11/27, ...

Ermitteln Sie [mm] a_n [/mm]

So,

ich habe Nenner und Zähler getrennt betrachtet. Oben ist die DIfferenz immer zwei, also konnte ich einfach einsetzen in [mm] a_n=a_1 [/mm] + (n-1) * d
=> 3 + (n-1) * 2
<=> 2*n +1

Im Nenner ist der Abstand erst in zweiter Ordnung mit 2 festzustellen.
Nur wie packe ich sowas in ein Bildungsgesetzt, da muss es doch irgendeine Vorschrift geben. Ich bin ca. 30 Minuten am probieren, das kanns doch nicht sein :)

        
Bezug
bildungsgesetz arith. 2. Ordnu: Antwort
Status: (Antwort) fertig Status 
Datum: 16:12 Sa 02.08.2008
Autor: Somebody


> Gegen ist die Zahlenfolge: 1, 5/6, 7/11, 9/18, 11/27, ...
>  
> Ermitteln Sie [mm]a_n[/mm]
>  So,
>  
> ich habe Nenner und Zähler getrennt betrachtet. Oben ist
> die DIfferenz immer zwei, also konnte ich einfach einsetzen
> in [mm]a_n=a_1[/mm] + (n-1) * d
>  => 3 + (n-1) * 2

> <=> 2*n +1

Beinahe, aber [mm] $a_1$ [/mm] ist nicht $3$ sondern $1$ - oder hast Du dies in der obigen Aufgabenbeschreibung falsch hingeschrieben? Da wirst Du wohl beim Hinschreiben des allgemeinen Folgengliedes [mm] $a_n$ [/mm] eine Fallunterscheidung, $n=1$ oder [mm] $n\geq [/mm] 2$, machen müssen.

>
> Im Nenner ist der Abstand erst in zweiter Ordnung mit 2
> festzustellen.
>  Nur wie packe ich sowas in ein Bildungsgesetzt, da muss es
> doch irgendeine Vorschrift geben. Ich bin ca. 30 Minuten am
> probieren, das kanns doch nicht sein :)

Die Folge der ersten Differenzen des Nenners ist also eine arithmetische Folge 1. Ordnung. Schreib die mal hin. Der Nenner selbst ist dann im wesentlichen die zugehörige Summenfolge, denn die Differenz zweier aufeinanderfolgender Glieder der Summenfolge ist ja einfach gleich dem neu dazugekommenen Summanden.

Bezug
        
Bezug
bildungsgesetz arith. 2. Ordnu: Antwort
Status: (Antwort) fertig Status 
Datum: 16:19 Sa 02.08.2008
Autor: Fulla

Hallo cmg,

beim Zähler hast du Recht. Wenn man die 1 als [mm] $\frac{3}{3}$ [/mm] schreibt, ist [mm] $b_n=2n+1$. [/mm]

Beim Nenner fällt mir auf, dass die Differenzen der Zähler und Nenner immer Quadratzahlen sind: 0, 1, 4, 9, 16...
In eine Formel gepackt wäre das: [mm] $c_n=b_n+(n-1)^2$. [/mm] Wenn du das [mm] $b_n$ [/mm] von oben einsetzt, kommst du auf [mm] $c_n=n^2+2$. [/mm]

Insgesamt ist dann
[mm] $a_n=\frac{b_n}{c_n}=\frac{2n+1}{n^2+2}$ [/mm]


Lieben Gruß,
Fulla

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]