matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenChemiebildungsenthalpien
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Chemie" - bildungsenthalpien
bildungsenthalpien < Chemie < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Chemie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

bildungsenthalpien: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:05 Mo 15.10.2007
Autor: Sternchen0707

gengeb sind die moalren bildungsenthalpien von Methan (-74,9 KJ/mol) von Propan (-103,8 KJ/mol) von Wasserdampf (-242 KJ/mol) und von CO2 (-394 KJ/mol). brechnen sie aus diese Angaben die Reaktionsenthalpien für die Verbrennung von 1m³ Methan bzw 1m³ Propan.

ich weiß eigentlich überhaupt nich wie das ghen soll. bin für jede antwort dankbar

        
Bezug
bildungsenthalpien: Antwort
Status: (Antwort) fertig Status 
Datum: 20:33 Mo 15.10.2007
Autor: Zwerglein

Hi, Sternchen,

> gengeb sind die moalren bildungsenthalpien von Methan

Du meinst als: Gegeben sind die molaren Bildungsenthalpien von Methan

> (-74,9 KJ/mol) von Propan (-103,8 KJ/mol) von Wasserdampf
> (-242 KJ/mol) und von CO2 (-394 KJ/mol). brechnen sie aus
> diese Angaben die Reaktionsenthalpien für die Verbrennung
> von 1m³ Methan bzw 1m³ Propan.
>  
> ich weiß eigentlich überhaupt nich wie das ghen soll. bin
> für jede antwort dankbar

Da fehlt natürlich vor allem eine Angabe darüber, unter welchen Bedingungen diese jeweils 1 [mm] m^{3} [/mm] Methan bzw. Propan abgemessen wurden: Temperatur? Druck?
Ich gehe da mal von Normbedingungen aus. Dann gilt für beide Gase:
1 mol = 22,4 l.

Vorrechnen tu' ich's nur für Methan (bei Propan geht das analog):
[mm] CH_{4} [/mm] + 2 [mm] O_{2} \to CO_{2} [/mm] + 2 [mm] H_{2}O. [/mm]

Molare Reaktionsenthalpie (also für 1 mol Methan):

-394 kJ/mol + 2*(-242)kJ/mol - (-74,9)kJ/mol = -803,1kJ/mol.

1 [mm] m^{3} \quad CH_{4} [/mm] = 1000 Liter.

Unter der Voraussetzung, dass hier Normbed. vorliegen heißt das, es handelt sich um 1000:22,4 mol = 44,64 mol.

Demnach beträgt die gesucht Reaktionsenthalpie:

[mm] \Delta [/mm] H = -803,1*44,64 kJ = -35850 kJ.

mfG!
Zwerglein

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Chemie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]