matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare Algebrabildung einer Basis
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Lineare Algebra" - bildung einer Basis
bildung einer Basis < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

bildung einer Basis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:00 Di 13.06.2006
Autor: melek

Aufgabe
Zeigen Sie, dass die Linearformen  [mm] \delta_{1}, \delta_{2}, \delta_{3}: [/mm]
[mm] \IR^{3} \to \IR [/mm] mit [mm] \delta_{1} [/mm] (x,y,z)= x+2y+z, [mm] \delta_{2} [/mm] (x,y,z)=2x+3y+3z, [mm] \delta_{3} [/mm] (x,y,z)=3x+7y+z eine Basis von [mm] (\IR^{3})^{ \*} [/mm] bilden und berechnen Sie die dazu duale Basis in [mm] \IR^{3}. [/mm]

Hallo, nun bin ich an dieser Aufgabe und habe auch eine Idee, wie man rangehen kann, wollte aber erst wissen, ob es so richtig ist.
und zwar wollte ich fragen, ob ich die  [mm] \delta_{i}, [/mm] also die drei Vektoren nehme und zeigen soll, dass sie linear unabhängig sind??? und was ist
[mm] (\IR^{3})^{ \*} [/mm] ? und die duale Basis??

Wäre nett, wenn mir jemand weiterhilft..ich danke

        
Bezug
bildung einer Basis: Antwort
Status: (Antwort) fertig Status 
Datum: 17:19 Mi 14.06.2006
Autor: Hanno

Hallo.

Der Raum [mm] $(\IR^3)^{\ast}$ [/mm] ist der Dualraum von [mm] $\IR^3$, [/mm] der Raum der linearen Abbidungen von [mm] $\IR^3$ [/mm] in [mm] $\IR$. [/mm]

Um zu zeigen, dass [mm] $\delta_1,\delta_2,\delta_3$ [/mm] linear unabhängig sind, musst du wie üblich annehmen, dass es [mm] $\lambda_1,\lambda_2,\lambda_3\in \IR$ [/mm] mit [mm] $\lambda_1\delta_1+\lambda_2\delta_2+\lambda_3\delta_3=0$ [/mm] gibt. Dies ist genau dann der Fall, wenn [mm] $(\lambda_1\delta_1+\lambda_2\delta_2+\lambda_3\delta_3)(x)=0$, [/mm] also [mm] $x_1(\lambda_1+2\lambda_2+3\lambda_3)+x_2(2\lambda_1+3\lambda_2+7\lambda_3)+x_3(\lambda_1+3\lambda_2+\lambda_3)=0$ [/mm] für alle [mm] $x=(x_1,x_2,x_3)\in\IR^3$ [/mm] gilt. Setzt du nun $x=(1,0,0), (0,1,0), (0,0,1)$, erhältst du drei Gleichungen. Untersuche, ob diese für [mm] $\lambda_1,\lambda_2,\lambda_3\neq [/mm] 0$ lösbar sind. Erinnere dich: um zu zeigen, dass Vektoren linear unabhängig sind, musst du zeigen, dass die einzige Linearkombination des Nullvektors die triviale ist.
Aus der linearen Unabhängigkeit folgt dann sofort die Basiseigenschaft, da [mm] $(\IR^3)^{\ast}$ [/mm] die Dimension 3 hat (warum?).

Liebe Grüße,
Hanno

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]