matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, Körperbijektive Abbildung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Gruppe, Ring, Körper" - bijektive Abbildung
bijektive Abbildung < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

bijektive Abbildung: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 21:30 Do 01.12.2011
Autor: math101

Aufgabe
Sei [mm] M=\{1, 2, 3\}. F_{M} [/mm] ist Gruppe aller bijektiven Abbildungen der Menge M auf sich selbst. Bestimmen Sie alle Untergruppe und Normalteiler von [mm] F_M [/mm]

Abend!!
Ich hoffe jemand kann mir bei der Aufgabe helfen.
Man nennt solche Gruppe Permutationsgruppe und es gibt hier 6 Permutationen. Meine Frage ist wie unterteilt man diese Permutationen in Untergruppen und Normalteiler?

Vielen Dank im Voraus
Beste Grüße

        
Bezug
bijektive Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 23:44 Do 01.12.2011
Autor: felixf

Moin!

> Sei [mm]M=\{1, 2, 3\}. F_{M}[/mm] ist Gruppe aller bijektiven
> Abbildungen der Menge M auf sich selbst. Bestimmen Sie alle
> Untergruppe und Normalteiler von [mm]F_M[/mm]
>
>  Ich hoffe jemand kann mir bei der Aufgabe helfen.
>  Man nennt solche Gruppe Permutationsgruppe und es gibt
> hier 6 Permutationen. Meine Frage ist wie unterteilt man
> diese Permutationen in Untergruppen und Normalteiler?

Nun, such doch erstmal alle Untergruppen. Dazu schaust du zuerst die Untergruppe an, die von einem Element erzeugt werden. Sprich du faengst mit eniem Element [mm] $\sigma$ [/mm] an, berechnest [mm] $\sigma \circ \sigma$, $\sigma \circ \sigma \circ \sigma$, $\sigma^{-1}$, [/mm] etc. Damit bekommst du schonmal einige Untergruppen.

Dann schaust du, ob es Untergruppen gibt die von zwei Elementen erzeugt werden (und die nicht bereits die ganze Gruppe sind). Du wirst schnell feststellen (insb. wenn du Lagrange benutzt), dass das nicht geht. Damit sind diese Untergruppen zusammen mit [mm] $F_M$ [/mm] und [mm] $\{ id \}$ [/mm] bereits alle Untergruppen.

Um zu schauen, welche davon Normalteiler sind, schreib einfach jeweils alle Links- und alle Rechtsnebenklassen hin (ausser bei [mm] $F_M$ [/mm] und [mm] $\{ id \}$). [/mm] Dann siehst du schnell, welche davon Normalteiler sind und welche nicht.

Und denk dran: je mehr Theorie du verwendest, desto einfacher bzw. rechen-unaufwaendiger wird es.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]