matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLogikbeweise
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Logik" - beweise
beweise < Logik < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Logik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

beweise: kurze frage
Status: (Frage) beantwortet Status 
Datum: 11:04 Mi 17.11.2004
Autor: meee

hallo alle zusammen!
Wie beweise ich  dass die aussage war ist?
( [mm] \exists [/mm] x)( [mm] \forall [/mm] y) : A (x,y)  [mm] \Rightarrow [/mm] ( [mm] \forall [/mm] y) ( [mm] \exists [/mm] x ): A (x,y)
was sind meine schritte

ch habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
beweise: Antwort
Status: (Antwort) fertig Status 
Datum: 12:21 Mi 17.11.2004
Autor: Peter_Pein

Hallo meee,

eigentlich brauchst Du Dir nur genau anzusehen, was Du dort stehen hast. In Umgangssprache wird es manchmal ungenau, aber oft einsichtiger, weil der Formalismus - gerade wenn er neu für jemanden ist - leicht verwirrend sein kann.
Du hast also ein x; das hast Du und niemand kann oder möchte es Dir nehmen. Dieses x hat nun die Eigenschaft, dass A(x,y) für alle nur denkbaren y erfüllt ist. Nun kommt so ein blöder Übungszettel mit allen erdenklichen y auf Dich zu und sagt: "zeig mir ein x, damit A(x,y) für alle y erfüllt ist, oder es gibt keine Punkte."
Wie gut, dass Du es schon hast... ;-)

Den Formalismus möchte ich Dir zur Übung Überlassen.

Alles Gute,
Peter

Bezug
                
Bezug
beweise: Frage
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 23:26 Mi 17.11.2004
Autor: meee

echt sorry, aber ich kann leider damit nicht viel anfangen. Weiß einfach nicht wie ich anfangen soll.

Bezug
                        
Bezug
beweise: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:42 Do 18.11.2004
Autor: Bastiane

Hallo!
Zugegeben, beim ersten Lesen von Peters Antwort war ich auch leicht verdutzt. Aber ich glaube, deine Aussage ist trivial, bist du sicher, dass du das groß beweisen musst?

MfG
Bastiane
[banane]


Bezug
        
Bezug
beweise: Antwort
Status: (Antwort) fertig Status 
Datum: 04:25 Do 18.11.2004
Autor: Peter_Pein

Also gut, dann eben knapp:

[mm] (\exists x)(\forall [/mm] y): A(x,y).

taufe dieses x auf den Namen [mm] x_{0}, [/mm] dann hast Du:

[mm] (\forall [/mm] y): A(x0,y)

und da [mm] x_{0} [/mm] ein existierendes x ist:

[mm] (\forall y)(\exists [/mm] x):A(x,y)

Nur nicht verzweifeln - es wird irgendwann schwieriger ;-)

Peter


Bezug
                
Bezug
beweise: mitteilung
Status: (Frage) beantwortet Status 
Datum: 22:57 So 21.11.2004
Autor: meee

hallo bastiane, die lösung haben wir jetzt schon in der vorlesun besprochen. trotzdem kann ich das überhaupt nicht nachvollziehen. leider fällt es mir total schwer da mitzukommen.

Bezug
                        
Bezug
beweise: Lösung angeben...
Status: (Antwort) fertig Status 
Datum: 15:18 Mo 22.11.2004
Autor: Bastiane

Hallo meee!
> hallo bastiane, die lösung haben wir jetzt schon in der
> vorlesun besprochen. trotzdem kann ich das überhaupt nicht
> nachvollziehen. leider fällt es mir total schwer da
> mitzukommen.

Dann gib doch deine besprochene Lösung mal hier ein, dann können wir ja versuchen, es dir nochmal daran zu erklären. Am besten gibst du auch direkt an, wo du was nicht verstehst.

Viele Grüße
Bastiane
[cap]


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Logik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]