matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / Vektorrechnungbeweis lineare abhängigkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra / Vektorrechnung" - beweis lineare abhängigkeit
beweis lineare abhängigkeit < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

beweis lineare abhängigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:08 Di 17.02.2009
Autor: noobo2

Hallo,
ich soll im nachfolgenden bild
[Dateianhang nicht öffentlich]
beweisen, dass die Strecken [mm] Q_{i} S_{i} [/mm]
(wobei [mm] S_{i} [/mm] und die strecke nicht eingezeichnet ist, [mm] S_{i} [/mm] ist immer der Schwerpunkt der gegenüberliegendne Seite des jeweiligen Eckpunkts)
auf einer Ebene liegen, also linear abhängig sind.
Dafür habe ich zuerst alle Strecken als Kombination der aufspannvektoren a,b,c angegeben wobei gilt:
d=b-a
f=c-b
e=c-a
und komme für i=1
[mm] \bruch{1}{3}(a+b+c) [/mm]
i=2  eigentlich [mm] (\bruch{1}{3}(d-a+e)) [/mm] ergibt eingesetzt
[mm] \bruch{1}{3}a+\bruch{1}{3}b-c [/mm]
i=3  s.o.
[mm] \bruch{1}{3}a+\bruch{1}{3}c-b [/mm]
i=4  s.o.
[mm] \bruch{1}{3}b+\bruch{1}{3}c-a [/mm]
stimmt das denn?

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
beweis lineare abhängigkeit: trivial oder falsch
Status: (Antwort) fertig Status 
Datum: 20:42 Di 17.02.2009
Autor: Al-Chwarizmi

Hallo,

falls sich das Ganze in der zweidimensionalen x-y-Ebene
abspielt (wie man aus dem eingezeichneten KS ableiten
könnte), ist die Behauptung trivial.

Im [mm] \IR^3, [/mm] und wenn eine Pyramide mit positivem
Volumen vorliegt, ist die Behauptung sicher falsch.

Prüfe nach, was genau denn bewiesen werden soll.
(vielleicht dass sich die 4 Geraden in einem Punkt
treffen)

LG

Bezug
                
Bezug
beweis lineare abhängigkeit: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 21:10 Di 17.02.2009
Autor: noobo2

hallo,
es soll gezeigt werde, dass sich die geraden schneiden, es handelt sich um den  [mm] R^3, [/mm] eigentlich ging es mir nur darum, ob jeémand die linearkombinationen nachprüfen kann

Bezug
                        
Bezug
beweis lineare abhängigkeit: aha
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:24 Di 17.02.2009
Autor: Al-Chwarizmi

Hab ich doch gedacht.  Du hast nur zuerst etwas
ganz anderes gefragt.

Sorry, im Moment habe ich keine Zeit mehr...

Bezug
                        
Bezug
beweis lineare abhängigkeit: Rechenweg?
Status: (Antwort) fertig Status 
Datum: 21:33 Di 17.02.2009
Autor: informix

Hallo noobo2,

> hallo,
>  es soll gezeigt werde, dass sich die geraden schneiden, es
> handelt sich um den  [mm]R^3,[/mm] eigentlich ging es mir nur darum,
> ob jemand die linearkombinationen nachprüfen kann

du solltest doch wissen: keine Lösung ohne den Rechenweg!
Ich habe keine Lust, das selbst nachzurechnen...

Erklär das Prinzip deiner Rechnung mal zunächst für i=1 ein wenig ausführlicher, bitte.

Gruß informix

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]