matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, Körperbeweis einer gruppe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gruppe, Ring, Körper" - beweis einer gruppe
beweis einer gruppe < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

beweis einer gruppe: tipp
Status: (Frage) beantwortet Status 
Datum: 18:53 Di 17.11.2009
Autor: sepp-sepp

Aufgabe
sei K ein Körper. Auf der Menge G= (K \ {0} ) [mm] \times [/mm] K sei die Verknüpfung
[mm] \circ: [/mm] G [mm] \times [/mm] G [mm] \to [/mm] G definiert durch: (a,x) [mm] \circ [/mm] (b,y) = (ab, xb+y)
Zeigen Sie, dass (G, [mm] \circ) [/mm] eine Gruppe ist.  

Also ich denke mal man muss irgendwie die Eigenschaften einer Gruppe nachweisen (Assoziativität, Ex.des neutralen Elements, Ex von inversen Elementen). Die Frage ist jetzt nur wie. mein problem ist, dass ich die Gleichung (a, x) [mm] \circ [/mm] (b,y) = (ab, xb+y) nicht versteh, weiß nicht wo die herkommt. außerdem weiß ich nicht für was das [mm] \circ [/mm] steht, bedeutet das nur verknüpfung allgemein oder "mal"? wie fange ich da an? danke

        
Bezug
beweis einer gruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 19:13 Di 17.11.2009
Autor: Arcesius

Hallo

> sei K ein Körper. Auf der Menge G= (K \ {0} ) [mm]\times[/mm] K sei
> die Verknüpfung
> [mm]\circ:[/mm] G [mm]\times[/mm] G [mm]\to[/mm] G definiert durch: (a,x) [mm]\circ[/mm] (b,y)
> = (ab, xb+y)
>  Zeigen Sie, dass (G, [mm]\circ)[/mm] eine Gruppe ist.
> Also ich denke mal man muss irgendwie die Eigenschaften
> einer Gruppe nachweisen (Assoziativität, Ex.des neutralen
> Elements, Ex von inversen Elementen).

Genau, diese Axiome sind zu verifizieren.

> Die Frage ist jetzt
> nur wie. mein problem ist, dass ich die Gleichung (a, x)
> [mm]\circ[/mm] (b,y) = (ab, xb+y) nicht versteh, weiß nicht wo die
> herkommt. außerdem weiß ich nicht für was das [mm]\circ[/mm]
> steht, bedeutet das nur verknüpfung allgemein oder "mal"?
> wie fange ich da an? danke

Nun, du hast zwei Elemente, die mit [mm] \circ [/mm] verknüpft werden (auf die obige Art).
Eine Gruppe hat nur eine Verknüpfung, und diese muss assoziativ sein.

Also, nimm einfach 3 Elemente und schaue mal, ob beim vertauschen der Klammern das selbe Resultat raus kommt :)

Dann einfach noch inverses und neutrales Element finden.. (also für das Inverse beispielsweise (a,a') [mm] \circ [/mm] (b,b') = (e,e'). Was ist (b,b')? Natürlich zuerst das neutrale Element finden..)


Solltest du nicht weiterkommen, einfach nachfragen!


Grüsse, Amaro

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]