matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungbetragsfunktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Differenzialrechnung" - betragsfunktion
betragsfunktion < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

betragsfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:11 Fr 27.03.2009
Autor: learningboy

warum ist die betragsfunktion an der stelle x=0 nicht diffbar.

0 = -0

?

warum nicht?

danke!

        
Bezug
betragsfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 21:17 Fr 27.03.2009
Autor: Mandy_90


> warum ist die betragsfunktion an der stelle x=0 nicht
> diffbar.
>  
> 0 = -0
>  
> ?
>  
> warum nicht?
>  
> danke!

Hallo,

schau die mal den Graphen der Betragsfunktion an.An der Stelle 0 hat der einen Knick.
Eine Funktion ist an einer Stelle differenzierbar,wenn man an diese Stelle eine eindeutige Tangente legen kann.Bei der Betragsfunktion ist dies jedoch nicht so.
Versuch mal an der Stelle x=0 eine EINDEUTIGE Tangente zu zeichnen.Das wird nicht klappen,denn an x=0 kannst du sehr viele Tangenten einzeichnen.Deswegen ist die Funktion an der Selle x=0 auch nicht differenzierbar.

lg


Bezug
                
Bezug
betragsfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:25 Fr 27.03.2009
Autor: learningboy

das ist die optische Erklärung, aber wie zeige ich das mathematisch?

danke.

Bezug
                        
Bezug
betragsfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 21:43 Fr 27.03.2009
Autor: Blech

Eine Funktion ist genau dann differenzierbar an der Stelle [mm] $x_0$, [/mm] wenn der Grenzwert

[mm] $\lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0}$ [/mm]

existiert.

Das bedeutet insbesondere, daß es egal sein muß, ob wir x von links oder von rechts gegen [mm] $x_0$ [/mm] gehen lassen, es muß immer der gleiche Wert rauskommen.

Im Fall $f(x)=|x|$ gilt aber:

[mm] $\lim_{h\to 0, h>0} \frac{f(h)-f(0)}{h}=1$ [/mm]

und

[mm] $\lim_{h\to 0, h<0} \frac{f(h)-f(0)}{h}=-1$ [/mm]


Damit ist
[mm] $\lim_{h\to 0} \frac{f(h)-f(0)}{h-0}$ [/mm]
nicht definiert, weil das Ergebnis davon abhängt, wie das h gegen 0 geht.

ciao
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]