matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationbestimme Integrale
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Integration" - bestimme Integrale
bestimme Integrale < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

bestimme Integrale: Korrektur und Tipp
Status: (Frage) beantwortet Status 
Datum: 10:25 Fr 25.06.2010
Autor: SnafuBernd

Aufgabe
[mm] \integral_{-\frac{\pi}{3}}^{\frac{\pi}{3}}{e^{x^2}sin(x)dx} [/mm]

Hi,

partielle Integration kann ich hier ja nicht anwenden, weil sin und [mm] e^x [/mm] nie verschwinden, egal ob man integriert oder differenziert. Deswegen habe ich versucht zu substituieren mit [mm] t:=x^2, [/mm] dann kriege ich aber wegen dem [mm] x^2 [/mm] die selben Grenzen raus:

[mm] \integral_{\frac{\pi^2}{9}}^{\frac{\pi^2}{0}}{e^{t}sin(\sqrt{t})\frac{1}{2sqrt{t}}dx} [/mm] = 0, das Ergebnis stimmt zwar mit der Null, aber ich bin mir nicht sicher, ob der Schritt und die daraus folgende Integration stimmt?

Snafu

        
Bezug
bestimme Integrale: Antwort
Status: (Antwort) fertig Status 
Datum: 10:39 Fr 25.06.2010
Autor: MontBlanc

hallo,

das wirst du so nicht integrieren können. da kommt was mit erf(x) heraus. da es aber bestimmt ist, helfen dir symmetrieüberlegungen zum integranden!

lg

Bezug
                
Bezug
bestimme Integrale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:11 Fr 25.06.2010
Autor: SnafuBernd

Hi,

ja mein Problem ist, bei sin weiß ich ja noch das es Ursprungssymetrisch ist, aber bei [mm] e^{x^2} [/mm] sehe ich das nicht sofort? muss ich dann zeigen [mm] e^{x^2}= e^{(-x)^2} [/mm] ..hmm ok jetzt ist es doch sehr Punktsymmetrisch.... d.h. ich geben das Ergebnis Null an und argumentiere mit der Ursprungssymmetrie eine Komposition und punktsymmetrischen Funktionen?

Snafu

Bezug
                        
Bezug
bestimme Integrale: Antwort
Status: (Antwort) fertig Status 
Datum: 11:13 Fr 25.06.2010
Autor: fred97


> Hi,
>  
> ja mein Problem ist, bei sin weiß ich ja noch das es
> Ursprungssymetrisch ist, aber bei [mm]e^{x^2}[/mm] sehe ich das
> nicht sofort? muss ich dann zeigen [mm]e^{x^2}= e^{(-x)^2}[/mm]
> ..hmm ok jetzt ist es doch sehr Punktsymmetrisch.... d.h.
> ich geben das Ergebnis Null an und argumentiere mit der
> Ursprungssymmetrie eine Komposition und punktsymmetrischen
> Funktionen?
>  
> Snafu


Setze $f(x)= [mm] e^{x^2}sin(x)$. [/mm] Dann zeigt man doch so umgehend wie geschwind, dass $f(-x)=-f(x)$ ist

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]