matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationbest. Integrale
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integration" - best. Integrale
best. Integrale < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

best. Integrale: Tipp
Status: (Frage) beantwortet Status 
Datum: 14:56 Sa 10.03.2007
Autor: cardia

Aufgabe
Berechnen Sie [mm] \integral_{0,1}^{1,2}{[(x^2-y)dx + (y^2+x) dy]} [/mm] entlang

a) einer Geraden von (0,1) bis (1,2)
b) der Geraden von (0,1) bis (1,1) und dann von (1,1) bis (1,2)
c) der Parabel x=t bis [mm] y=t^2+1 [/mm]

Hallo!

Wie soll man jetzt hier vorgehen? Erst das gegebene Integral in den Grenzen 0,1 bis 1,2 für dx und dy integrieren und dann die in Teil a bis c gegebenen Werte jeweils für x und y einsetzen?

Das Integral habe ich mal gelöst (s. unten).

Danke!

[Dateianhang nicht öffentlich]

Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
        
Bezug
best. Integrale: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:38 Sa 10.03.2007
Autor: blascowitz

Hallo erstmal.
Also irgendwie finde ich die aufgabe komisch. Ich schreib jetzt mal ne lösung so wie ich die aufgabe verstehe: also unter vorbehalt genießen

[mm] \integral_{0,1}^{1,2}{[(x^2-y) dx + (y^2+x)dy]} [/mm]
Dabei verstehe ich x und y als koordinaten eines punktes (x,y). Also fangen wir an

[mm] \integral_{0,1}^{1,2}{[(x^2-y) dx + (y^2+x)dy]} [/mm]
Bestimmen der Stammfunktion:
[mm] [\bruch{1}{3}x^3-xy]+[\bruch{1}{3}y^3+xy] [/mm]
Dann jetzt für x und y  halt die Koordinaten des ersten Punktes einsetzten einsetzten und ausrechnen dann die koordinaten das zweiten punktes einsetzen und dann abziehen. bei a kommt dann zum [mm] beispiel(2\bruch{2}{3}) [/mm] raus. Bei b dann halt das zweimal machen, bei c bleibt y unbestimmt, da das erste ja eigenlich kein richtiger punkt ist da y bei x=t beliebig zu wählen ist.
So versteh ich die aufgabe

Bezug
                
Bezug
best. Integrale: Integrationskonstante?
Status: (Frage) überfällig Status 
Datum: 16:59 Sa 10.03.2007
Autor: cardia

Hallo blascowitz,

aber wenn man das Integral zuerst unbestimmt löst muss ja zumindest wieder eine Integrationskonstante dabei, oder?!

[mm] [\bruch{1}{3}x^3-xy]+[\bruch{1}{3}y^3+xy] [/mm] + C

Und wenn ich hier jetzt nur zwei Punkte einsetze dann..... ja weiß ich jetzt auch nicht genau!

Hat noch jmd. einen Tipp???

Danke!

Bezug
                        
Bezug
best. Integrale: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 Mo 12.03.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]