matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe Analysisbesselfunktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Komplexe Analysis" - besselfunktion
besselfunktion < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

besselfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:26 Di 17.06.2008
Autor: balisto

Aufgabe
Sei [mm] z\in\IC, n\in\IR. [/mm] Die Funktion [mm] I_{n} [/mm] sei als koeffizient bei der Laurent-
Entwicklung der Funktion [mm] \alpha \mapsto e^{\bruch{1}{2}z(\alpha - \bruch{1}{\alpha})} [/mm] um Null definiert:
[mm] e^{\bruch{1}{2}z(\alpha - \bruch{1}{\alpha})} [/mm] = [mm] \summe_{n=-\infty}^{\infty}I_{n}(z)\alpha^{n} [/mm]
Zeigen Sie:
[mm] I_{n}(z) [/mm] = [mm] \bruch{1}{\pi}\integral_{0}^{\pi}{cos(nx-zsinx)dx} [/mm] = [mm] \summe_{k=0}^{\infty}\bruch{(-1)^{k}}{k!(n+k)!}(\bruch{z}{2})^{2k+n}. [/mm]  

Hallo,

Leider hab ich nicht die geringste Ahnung, wie ich an diese Aufgabe rangehen soll.
Wäre toll, wenn mir einer ein paar Tipps geben könnte!
Danke schonmal!

MfG
balisto

        
Bezug
besselfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 12:24 Mi 18.06.2008
Autor: rainerS

Hallo!

> Sei [mm]z\in\IC, n\in\IR.[/mm] Die Funktion [mm]I_{n}[/mm] sei als
> koeffizient bei der Laurent-
>  Entwicklung der Funktion [mm]\alpha \mapsto e^{\bruch{1}{2}z(\alpha - \bruch{1}{\alpha})}[/mm]
> um Null definiert:
> [mm]e^{\bruch{1}{2}z(\alpha - \bruch{1}{\alpha})}=\summe_{n=-\infty}^{\infty}I_{n}(z)\alpha^{n}[/mm]
>  Zeigen Sie:
>  [mm]I_{n}(z)[=\bruch{1}{\pi}\integral_{0}^{\pi}{cos(nx-zsinx)dx} = \summe_{k=0}^{\infty}\bruch{(-1)^{k}}{k!(n+k)!}(\bruch{z}{2})^{2k+n}.[/mm]
> Hallo,
>  
> Leider hab ich nicht die geringste Ahnung, wie ich an diese
> Aufgabe rangehen soll.
>  Wäre toll, wenn mir einer ein paar Tipps geben könnte!

Für das Integral würde ich es mal mit der Integraldarstellung der Koeffizienten einer Laurentreihe versuchen:

[mm] I_n(z) = \bruch{1}{2\pi i}\oint_\gamma \bruch{e^{\bruch{1}{2}z(\alpha - \bruch{1}{\alpha})}}{\alpha^{n+1}}d\alpha [/mm],

wobei [mm] $\gamma$ [/mm] eine geschlossene Kurve um 0 ist.

Die Summe am Schluss kannst du entweder durch Reihenentwicklung des Cosinus und gliedweise Integration oder aus der Reihenentwicklung der Exponentialfunktion ableiten:

[mm] e^{\bruch{1}{2}z(\alpha - \bruch{1}{\alpha})} = e^{\bruch{1}{2}z\alpha}*e^{-\bruch{1}{2}\bruch{z}{\alpha}} [/mm]

Die beiden e-Funktionen entwickelst du wie üblich, schreibst sie als Laurentreihen in [mm] $\alpha$ [/mm] und bildest dann das Cauchy-Produkt. Dich interessiert am Ende ja nur der Koeffizient des Terms [mm] $\alpha^n$. [/mm]

Übrigens: Alles, was du über Besselfunktionen wissen willst, findest du im Tabellenwerk von Abramowitz/Stegun, Besselfunktionen []hier.

Vorsicht: Dort heisst die Besselfunktion [mm] $J_n(z)$. $I_n(z)$ [/mm] bedeutet eine etwas andere, die sogenannte modifizierte Besselfunktion.

Viele Grüße
   Rainer

Bezug
                
Bezug
besselfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:11 Mi 18.06.2008
Autor: balisto

Ah, ok. Vielen Dank!
Die Integraldarstellung hab ich jetzt hinbekommen.
Die Summe probier ich dann in Ruhe am Wochenende. Bei Fragen meld ich mich.
Nochmals Dankeschön.

MfG
balisto

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]