matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und Grenzwertebeschränktheit einer folge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Grenzwerte" - beschränktheit einer folge
beschränktheit einer folge < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

beschränktheit einer folge: was sagt a(n) kleiner n aus?
Status: (Frage) beantwortet Status 
Datum: 23:18 Do 28.09.2006
Autor: daylight

hallo, wir nehmen in mathe (jgst.12, bw) gerade Folgen und Reihen durch.
Heute hat mein Mathelehrer den Zusammenhang zwischen dem Verhältnis von a(n index) und n   und der Beschränktheit einer Folge erklärt.

Leider habe ich es nicht so verstanden und auch nicht mitgekriegt, was man nun aus a(n) >n  und a(n)<n in Bezug auf Beschränktheit sagen kann.

Kann mir vielleicht jemand weiterhelfen?

Eine Musteraufgabe:
Untersuche [mm] n^2/100+n [/mm] auf Beschränktheit.
Ich verstehe die Aufgabe aber nicht den Zusammenhang mit a(n) >n  und a(n)<n .

Ich wäre euch sehr dankbar, wenn ihr mir helfen könntet.

Liebe Grüße,

Lisa

        
Bezug
beschränktheit einer folge: Antwort
Status: (Antwort) fertig Status 
Datum: 01:21 Fr 29.09.2006
Autor: leduart

Hallo daylight
[mm] a_{n}>n [/mm] oder [mm] a_{n} z. Bsp ist die Folge [mm] a_{n}=n/10 [/mm] unbeschränkt ebenso wie a(n)=n. Nach oben beschränkt heisst dass man eine Zahl angeben kann, so dass die Zahlen nie größer werden als diese Zahl, egal wie groß man n macht, oder nach unten beschränkt, wenn es eine Zahl gibt, so dass es in der ganzen Folge keine Kleinere gibt.
a(n)=1/n ist eine Folge, die nach oben beschränkt ist durch 1 und nach unten durch 0. a(n)=n/100 ist nach oben unbeschränkt, nach unten durch 1 beschränkt.
[mm] n^{2}/100 [/mm] ist nach oben unbeschränkt, n auch, die Summe also auch!
aber < 1 kann es nicht werden.
(Meist interressiert man sich aber nur dafür, was bei immer größeren n wird, und nicht wie es anfängt)

Dass [mm] n^{2}/100 [/mm] nach oben unbeschränkt ist zeigt man so:
1. zu jeder reellen Zahl gibt es eine natürliche Zahl, die größer ist.
2. Wenn jemand behauptet, er hätte eine Grenze für [mm] n^{2}/100 [/mm] gefunden, nennen wir diese Zahl G, dann rechnest du einfach aus , wann wäre [mm] a^{2}/100=G, [/mm] daraus folgt bei [mm] a=\wurzel{100G} [/mm] und dann nimmt man die nächst größere Zahl n. die gibt es zu jedem G, also gibts kein solches G!
Ich hoff es ist etwas klarer geworden, sonst frag noch mal nach.
Gruss leduart


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]