matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-Funktionenbeschränktes Wachstum(Pflanze)
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Exp- und Log-Funktionen" - beschränktes Wachstum(Pflanze)
beschränktes Wachstum(Pflanze) < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

beschränktes Wachstum(Pflanze): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:47 Di 10.12.2013
Autor: Mowsar

Aufgabe 1
In einer Gärtnerei beobachtet ein Biologe eine Pflanzenart und notiert jeweils das Wachstum pro Monat. Folgende Daten sind vorhanden:

Alter(in Monaten)                              |1   |4   |6   |8|
Längenwachstum pro Monat(in cm)  |5,5|2,6|1,6|1|

c) Bestimmen Sie für diese Pflanzen eine exponentielle Funktion, die jeweils jedem Monat das Längenwachstum annähernd zuordnet.

Aufgabe 2
d) Bestimmen Sie für die Funktion aus c) die durchschnittliche Länge einer Pflanze nach 12 und 24 Monaten. Man kann davon ausgehen, dass eine Pflanze am Anfang 0,2 cm lang ist.

Guten Abend liebe Leute,

ich habe zu Freitag eine Klausurersatzleistung in Mathe und habe diese Aufgabe zum bearbeiten. Es ist aber die zweite Hälfte, die aber mit der anderen nichts zutun hat außer dem Thema mit den Pflanzen.

Da ich das Thema vorher noch nicht hatte und mir vom Lehrer empfohlen wurde, dass ich jeden und alle fragen und um Hilfe bitten darf außer ihm selbst, hatte ich schon die erste Hälfte von einem Schüler etwas erklärt bekommen.
Dabei kam ich auf die Grundfunktion beim beschränkten Wachstum:

f(x) = (A-G) [mm] \cdot $e^{-k*x}$ [/mm] + G

A= Anfangswert
G= Gesamtwert
k= Wachstumsrate

Meine Frage hier ist, ob mir jemand vielleicht etwas auf die Sprünge helfen könnte, wie gesagt ich hatte das Thema noch nicht und habe ab diesem Teil meiner Präsentation keinen weiteren Ansatz mehr.
Nach eigenen Überlegungen(siehe Tabelle) kam ich auf den Gedanken, dass das Längenwachstum k sein könnte. Also die Wachstumsrate pro dieser Monatsabstände. Da aber irgendwie das G fehlt bin ich ab hier nun noch durcheinander gekommen und habe völlig den Faden verloren.

Ich hoffe es kann mir baldmöglichst jemand helfen, damit ich die Aufgabe lösen kann.

MfG

Albert

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
beschränktes Wachstum(Pflanze): Antwort
Status: (Antwort) fertig Status 
Datum: 21:39 Di 10.12.2013
Autor: chrisno


> ...
> Alter(in Monaten)                 |1  |4  |6  |8|
>  Längenwachstum pro Monat(in cm)  |5,5|2,6|1,6|1|
>  
> c) Bestimmen Sie für diese Pflanzen eine exponentielle
> Funktion, die jeweils jedem Monat das Längenwachstum
> annähernd zuordnet.
>  d) Bestimmen Sie für die Funktion aus c) die
> durchschnittliche Länge einer Pflanze nach 12 und 24
> Monaten. Man kann davon ausgehen, dass eine Pflanze am
> Anfang 0,2 cm lang ist.
>  

$f(x) = [mm] (A-G)\cdot e^{-k*x} [/mm] + G$

>  
> A= Anfangswert
> G= Gesamtwert
> k= Wachstumsrate

Das ist ein Anfang, nun ein bisschen sortiert und analysiert:
f(x) ist die Länge zur Zeit x
G ist der Endwert des Längenwachstums. Das erkennt man daran, dass für große x, also nach langer Zeit, [mm] $e^{-k*x}$ [/mm] sehr klein wird, mit der Einschränkung, dass k größer als Null ist.
Zur Startzeit, also x=0 wird die e-Funktion 1. Damit steht da f(0) = A, also der Anfangswert.
Nun solltest Du wissen, welche Größen der Gleichung Du schon hast und welche noch zu bestimmen sind.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]