matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und Reihenbeschränkte Folge ?
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Reihen" - beschränkte Folge ?
beschränkte Folge ? < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

beschränkte Folge ?: Folgen
Status: (Frage) beantwortet Status 
Datum: 15:24 Do 02.06.2005
Autor: xerxes_tg

hallo an alle ...

wäre dankbar wenn Ihr weiterhelfen könnts:

also ich habe eine Folge  xn = <1+1/n>^n  , und ich soll schauen ob sie beschränkt ist (bzw. die Schranke ausrechnen)

der Lehrer hat dies mit der Binomialverteilung zerlegt und dann ausgerechnet.
Meine Frage ist, wann verwende ich diese Binomialverteilung bei Folgen, und was hat das mit dem zu tun ?!?

mfg

XerXes

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
beschränkte Folge ?: Antwort
Status: (Antwort) fertig Status 
Datum: 16:13 Do 02.06.2005
Autor: Hanno

Hallo Xerxes!

Was dein Lehrer angwandt hat, ist nicht die Binomialverteilung sondern der binomische Satz: [mm] $(a+b)^n=\summe_{k=0}^{n} \vektor{n\\ k} a^{k} b^{n-k}$. [/mm] Durch diese Umformungen gelangst du zu einer Summendarstellung des jeweiligen Folgengliedes, was eine präzisere Abschätzung möglich macht, nämlich eine Abschätzung der einzelnen Glieder nach oben [denn es ist ja genau der Sinn der Aufgabe, die Folgenglieder nach oben durch einen konstanten Wert abzuschätzen, nömlich die obere Schranke]. Wie auch im Heuser gebe ich dir hier einfach mal ein paar Tips, wie du zeigen kannst, dass $3$ eine obere Schranke der dir gegebenen Folge ist:

Schritt 1) Ausmultiplizieren des Binoms mit Hilfe des binomischen Satzes - das haben wir ja bereits gemacht, es führt zu [mm] $\left(1+\frac{1}{n}\right)^n=\summe_{k=0}^{n} \vektor{n\\ k}\frac{1}{n^k}$. [/mm]

Schritt 2) Beweise und verwende die Abschätzung [mm] $\vektor{n\\ k}\frac{1}{n^k}\leq \frac{1}{k!}$. [/mm]

Schritt 3) Wende die geometrische Summenformel [mm] $\summe_{k=0}^{n} a^n=\frac{a^n-1}{a-1}$ [/mm] an.


So, versuche es bitte einmal, wenn du Probleme hast, dann werden wir dir noch ein wenig mehr unter die Arme greifen.


Liebe Grüße und Viel Erfolg,
Hanno

Bezug
                
Bezug
beschränkte Folge ?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:56 Do 02.06.2005
Autor: xerxes_tg

Hi Hanno ...

Ich danke dir für deine große Hilfe !

zu Punkt 2, weißt du wieso man diese Abschätzung verwendet, bzw. woher diese Abschätzung kommt ?

mfg

XerXes

Bezug
                        
Bezug
beschränkte Folge ?: Definition Binomialkoeffizient
Status: (Antwort) fertig Status 
Datum: 17:26 Do 02.06.2005
Autor: Roadrunner

Hallo Xerxes,

zunächst einmal [willkommenmr] !!


Verwende doch einfach die Defintion des Binomialkoeffizienten:

[mm] $\vektor{n \\ k} [/mm] \ := \ [mm] \bruch{n!}{k!*(n-k)!} [/mm] \ = \ [mm] \bruch{n*(n-1)*(n-2)*...*(n-k+1)}{1*2*3*...*(k-1)*k}$ [/mm]


Damit wird doch:

[mm] $\vektor{n \\ k}*\bruch{1}{n^k} [/mm] \ = \ [mm] \bruch{n!}{k!*(n-k)!}*\bruch{1}{n^k} [/mm] \ = \ [mm] \bruch{1}{k!}*\underbrace{\bruch{n!}{(n-k)!}}_{\le \ n^k}*\bruch{1}{n^k} [/mm] \ \ [mm] \red{\le} [/mm] \ \ [mm] \bruch{1}{k!}*n^k [/mm] * [mm] \bruch{1}{n^k} [/mm] \ = \ [mm] \bruch{1}{k!}*1 [/mm] \ = \ [mm] \bruch{1}{k!}$ [/mm]


Nun klarer die Sache? [lichtaufgegangen] ?


Gruß vom
Roadrunner


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]