matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und Vektorräumebel. teilmengen eines VR
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra - Moduln und Vektorräume" - bel. teilmengen eines VR
bel. teilmengen eines VR < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

bel. teilmengen eines VR: idee
Status: (Frage) beantwortet Status 
Datum: 11:39 Mi 07.11.2007
Autor: kevinn

Ich soll unterscuhen ob für bel. teilmengen M und N eines bel vektorraums immer gilt:
(i) <M [mm] \cap [/mm] N> [mm] \subseteq\cap [/mm]
(ii)<M [mm] \cap N>=\cap [/mm]
(iii)<M [mm] \cup [/mm] N>=<M>+<N>
saß da gestern lange mit meinen kommilitonen dran und wir haben den tip bekommen das nur eines nicht gilt.... wir waren aber gegenteiliger meinung und uns fehlte die genaue vorstellung wie man es formal richtig beweisen muss  kann man mit M [mm] \cap [/mm] N:= [mm] \{\forall x\in M \cap N: x\in M\wedge x\in N\} [/mm] anfangen und dann umformen? oder macht man besser einen widerspruchsbeweis?
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
bel. teilmengen eines VR: Antwort
Status: (Antwort) fertig Status 
Datum: 12:07 Mi 07.11.2007
Autor: angela.h.b.


> Ich soll unterscuhen ob für bel. teilmengen M und N eines
> bel vektorraums immer gilt:
> (i) <M [mm]\cap[/mm] N> [mm]\subseteq\cap[/mm]
>  (ii)<M [mm]\cap N>=\cap[/mm]
>  (iii)<M [mm]\cup[/mm] N>=<M>+<N>

> saß da gestern lange mit meinen kommilitonen dran und wir
> haben den tip bekommen das nur eines nicht gilt.... wir
> waren aber gegenteiliger meinung

Hallo,

[willkommenmr].

Wie ist Deine Meinung?

Was möchtest Du zeigen?

Wenn Du etwas widerlegen möchtest, kannst Du das durch ein Gegenbeipiel machen.
Nimm einen konkerten Vektorraum und konkrete Teilmengen und zeig, daß die Aussage nicht stimmt.

> und uns fehlte die genaue
> vorstellung wie man es formal richtig beweisen muss  kann
> man mit M [mm]\cap[/mm] N:= [mm]\{\forall x\in M \cap N: x\in M\wedge x\in N\}[/mm]
> anfangen und dann umformen?

Mal angenommen, Du wolltest die Gültigkeit v. (i) beweisen.

Du würdest beginnen mit

Sei [mm] x\in [/mm] <M [mm]\cap[/mm] N>, und Dein Ziel sollte sein, daß herauskommt: dann ist auch [mm] x\in \cap. [/mm]

So hättest Du die Teilmengenbeziehung gezeigt.

"Unterwegs" wirst Du die genaue Def. der linearen Hülle  benötigen, obenso wie die Def. v. M [mm]\cap[/mm] N.

Gruß v. Angela

Bezug
                
Bezug
bel. teilmengen eines VR: rückfrage
Status: (Frage) beantwortet Status 
Datum: 13:22 Mi 07.11.2007
Autor: kevinn

Schonmal danke für deine Antwort....
Ich persönlich dachte gestern, dass es einfacher wäre durch äquivalenzen die gültigkeiten zu zeigen und nicht umbedingt mit widerspruchsbeweis

ich hab noch eine frage ich weiß nicht wie genau ich die definition der lin. hülle die mir als [mm] LinM:=\{v\inV|v ist Linearkombination von Vektoren aus M\} [/mm] mit [mm] Lin\emptyset=\{0\} [/mm] beigebracht wurde in die umformungen korrekt einbringen soll        Gruß kevinn

Bezug
                        
Bezug
bel. teilmengen eines VR: Antwort
Status: (Antwort) fertig Status 
Datum: 13:44 Mi 07.11.2007
Autor: angela.h.b.


> Schonmal danke für deine Antwort....
>  Ich persönlich dachte gestern, dass es einfacher wäre
> durch äquivalenzen die gültigkeiten zu zeigen und nicht
> umbedingt mit widerspruchsbeweis

Hallo,

von einem Widerspruchsbeweis habe ICH nichts gesagt.

Ich habe bloß gesagt, daß man durch ein Gegenbeispiel am besten widerlegen kann.

Ein Widerspruchsbeweis ist etws völlig anderes. Der dient zum Beweis einer Tatsache.


>  
> ich hab noch eine frage ich weiß nicht wie genau ich die
> definition der lin. hülle die mir als [mm]LinM:=\{v\inV|v ist Linearkombination von Vektoren aus M\}[/mm]
> mit [mm]Lin\emptyset=\{0\}[/mm] beigebracht wurde in die umformungen
> korrekt einbringen soll        Gruß kevinn

Wir betrachten einen VR V über dem Körper K.

[mm] x\in
<==>

Es gibt ein [mm] n\in \IN [/mm] , Vektoren [mm] v_1, [/mm] ..., [mm] v_n\in M\cap [/mm] N und Koeffizienten [mm] k_1,...,k_n \in [/mm] K mit [mm] x=\summe_{i=1}^{n}k_iv_1= k_1v_1+k_2v_2+...+k_nv_n. [/mm]


Gruß v. Angela

Bezug
                                
Bezug
bel. teilmengen eines VR: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:05 Mi 07.11.2007
Autor: kevinn

Danke für deine Hilfe! -ich glaub ich hab es jetzt fertig

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]