matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheoriebedingter Erwartungswert
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Wahrscheinlichkeitstheorie" - bedingter Erwartungswert
bedingter Erwartungswert < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

bedingter Erwartungswert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:31 Mi 07.07.2010
Autor: chris3

Hallo Leute!
Ich beschäftige mich derzeit mit bedingten Erwartungswerten.
Ich habe nun in meinem Skript gelesen:Sind X und Y Zufallsvariablen, so ist E[X|Y=y] eine reelle Zahl.
Außerdem sei E[g(X)|X=x] = E[g(x)]= g(x)
Meine 1. Frage ist nun:
wieso darf ich einfach die Bedingung {X=x} in g(X) einsetzen?
2.Frage:
wenn nun z.B.:
E[g(x)|X=x] gegeben sei. darf ich dann auch einfach E[g(x)|X=x] = E[g(X)] setzen?
FInde das ganze noch zeimlich verwirrend!
Danke für eure Hilfe!!  
Chris

        
Bezug
bedingter Erwartungswert: Erwartungswerte
Status: (Antwort) fertig Status 
Datum: 17:18 Do 08.07.2010
Autor: Infinit

Hallo Chris,
hier ein paar Kommentare.

Es gibt eine Zufallsvariable X die den Wert x annimmt. Bitte achte auf "Groß X" und "Klein x". Die Funktion g(X) könnte alle Werte annehmen, die sich durch die Zufallsvariable X ergeben könnte, aber in diesem Zufallsexperiment nimmt nun mal X den Wert x an. Dies ist nun eine wie immer auch geartete Konstante und der Erwartungswert über eine Konstante ist die Konstante selbst.
Deine zweite Schreibweise macht in diesem Zusammenhang keinen Sinn. Die Zufallsvariable X nimmt den Wert x an, aber Deine Funktion g(x) ist unabhängig von der Zufallsvariablen.
Viele Grüße,
Infinit

Bezug
                
Bezug
bedingter Erwartungswert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:02 Do 08.07.2010
Autor: chris3

Hallo Infinit!
Danke für deine Erläuterung!
Wenn also g(x) unabhängig von der Zufallsvariablen X ist, dann müsste doch gelten E[g(x)|X=x] = g(x), oder nicht???

Bezug
                        
Bezug
bedingter Erwartungswert: Erwartungswerte
Status: (Antwort) fertig Status 
Datum: 18:09 Do 08.07.2010
Autor: Infinit

Hallo Chris,
ja, das sehe ich auch so. Es ist der Erwartungswert über eine Konstante.
Viele Grüße,
Infinit

Bezug
                                
Bezug
bedingter Erwartungswert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:11 Do 08.07.2010
Autor: chris3

super! Dankeschön!!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]