matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Stochastikbedingter Erwartungswert
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Stochastik" - bedingter Erwartungswert
bedingter Erwartungswert < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

bedingter Erwartungswert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:25 Sa 31.10.2009
Autor: Mathec

Aufgabe
Gegeben seien 2 Zufallsvariablen X,Y mit gemeinsamer Dichte
[mm] f_{X,Y}(x,y)=15x^2y1_{0 \le x \le y \le 1}. [/mm]
Bestimme E(Y|X)!

Hallo Leute!
Ich hänge an obiger Aufgabe, da ich nicht weiss, wie die Integrationsgrenzen zu setzen sind. Die Vorgehensweise ist schon klar: Randdichte von [mm] f_{X}(x) [/mm] berechnen und dann [mm] f(y|x):=f_{X,Y}(x,y) [/mm] / [mm] f_{X}(x) [/mm] berechnen... Schon bei der Randdichte [mm] f_{X}(x) =\integral_{-\infty}^{\infty}{f_{X,Y}(x,y) dy} [/mm] weiss ich nicht, ob ich von 0 bis 1 oder  von x bis 1 integrieren soll????Genauso dann später, wenn ich den bedingten E-Wert berechnen soll :-(
Ich hoffe, ihr habt nen Tipp für mich!! Bin für jede Hilfe dankbar!!
Mathec

        
Bezug
bedingter Erwartungswert: Antwort
Status: (Antwort) fertig Status 
Datum: 18:42 Sa 31.10.2009
Autor: luis52


>  Ich hänge an obiger Aufgabe, da ich nicht weiss, wie die
> Integrationsgrenzen zu setzen sind. Die Vorgehensweise ist
> schon klar: Randdichte von [mm]f_{X}(x)[/mm] berechnen und dann
> [mm]f(y|x):=f_{X,Y}(x,y)[/mm] / [mm]f_{X}(x)[/mm] berechnen... Schon bei der
> Randdichte [mm]f_{X}(x) =\integral_{-\infty}^{\infty}{f_{X,Y}(x,y) dy}[/mm]
> weiss ich nicht, ob ich von 0 bis 1 oder  von x bis 1
> integrieren soll????

Moin Mathec,

mach dir mal eine Skizze der Menge [mm] $\{(x,y)\mid 0\le x\le y\le 1\}$. [/mm]
Gib dir dann $x_$ vor. Wo liegt der Bereich, ueber den integriert wird?

> Genauso dann später, wenn ich den
> bedingten E-Wert berechnen soll :-(

Wo liegt dann das Problem? Wenn du [mm] $f_X$ [/mm] hast, hast du auch [mm] $f(y\mid [/mm] x)$
und dann [mm] $\operatorname{E}[Y\mid X=x]=\int [/mm] y [mm] f(y\mid x)\,dy$ [/mm] und folglich [mm] $\operatorname{E}[Y\mid [/mm] X]$.

vg Luis


Bezug
                
Bezug
bedingter Erwartungswert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:58 Sa 31.10.2009
Autor: Mathec

Hallo Luis!
Also, wenn ich mir die Menge aufzeichne, habe ich die Winkelhalbierende zwschen der x- und y-Achse und der Bereich, der unter der Winkelhalbierenden liegt, ist der zulässige. Wobei natürlich y nur bis höchstens 1 gehen darf...also müsste es bedeuten, dass ich als Grenzen x und 1 nehmen muss,oder?Also muss ich auch diese Grenzen wieder nehmen, wenn ich den bed. E-Wert berechnen will?
VG und Danke!!!

Bezug
                        
Bezug
bedingter Erwartungswert: Antwort
Status: (Antwort) fertig Status 
Datum: 19:30 Sa 31.10.2009
Autor: luis52


> Hallo Luis!
>  Also, wenn ich mir die Menge aufzeichne, habe ich die
> Winkelhalbierende zwschen der x- und y-Achse und der
> Bereich, der unter der Winkelhalbierenden liegt, ist der
> zulässige. Wobei natürlich y nur bis höchstens 1 gehen
> darf...also müsste es bedeuten, dass ich als Grenzen x und
> 1 nehmen muss,oder?

[ok]

> Also muss ich auch diese Grenzen wieder
> nehmen, wenn ich den bed. E-Wert berechnen will?
>  VG und Danke!!!  

Schaun mer mal.

vg Luis


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]