matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Stochastikbedingter Erwartungswert
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Stochastik" - bedingter Erwartungswert
bedingter Erwartungswert < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

bedingter Erwartungswert: Tipp zur Definition
Status: (Frage) beantwortet Status 
Datum: 13:46 Fr 11.11.2005
Autor: anni0804

Hallo,
ich habe ein Problem mit der Definition des bedingten Erwartungswertes.
Ich soll den bedingten Erwartungswert [mm] $$E(\theta [/mm] | [mm] r(\theta) \le [/mm] w)$$ berechnen. Hierbei ist [mm] $$r(\theta)= \bruch{1}{3} \wurzel{\theta}$$. [/mm]
Leider weiss ich gar nicht, wie der bedingte Erwartungswert definiert ist und somit leider auch nicht wie man ihn berechnet. (Zusätzlich ist hier auch noch die Dichtefunktion [mm] $$f(\theta)= 6(1-\theta)\theta$$ [/mm] angegeben. Die benötige ich wohl auch zur Berechnung ??)

Vielleicht hat jemand einen Tipp für mich.
Danke.

        
Bezug
bedingter Erwartungswert: definition
Status: (Antwort) fertig Status 
Datum: 16:45 Fr 11.11.2005
Autor: Xanthippe0815

Hallo,

die Definition des bedingten Erwartungswertes lautet:
[mm] E[X|B]:= \integral {f(s|B) ds}[/mm]
[mm] = \integral {s*\bruch{f(s)1_{B}(s)}{P(B)}ds}[/mm]
[mm] = \bruch{1}{P(B)}\integral_{B} {s*f(s)ds}[/mm]
beziehungsweise im diskreten Fall dann nicht Integrale sondern Summen!

Liebe Grüsse
Xanthippe0815



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]