matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStochastikbedingte W´keiten
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Stochastik" - bedingte W´keiten
bedingte W´keiten < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

bedingte W´keiten: Tipp/Korrektur
Status: (Frage) beantwortet Status 
Datum: 22:08 Mi 04.11.2009
Autor: ella87

Aufgabe
Im Rahmen der Schweinegrippeepedemie wurde ein Teil der Bevölkerung geimpft. Die Erfahrung zeigt, dass von fünf Kranken nur einer geimpft ist. Man weiß zusätzlich, dass unter zwölf Geimpften nur ein Kranker ist.
a) Gehen Sie zunächst davon aus, dass ein Viertel der Bevölkerung geimpft wurde. Mit welcher Wahrscheinlichkeit wird dann ein Nichtgeimpfter krank?

Ich muss gestehen ich bin ein bisschen irritiert!

K = krank; I = geimpft

[mm] \bruch{1}{5}[/mm] der Kranken ist geimpft:  [mm] P \left(I|K \right) = \bruch{1}{5} [/mm]
unter 12 Geimpften nur ein Kranker: [mm] P \left(K|I \right) = \bruch{1}{12} [/mm]
[mm] P \left(I\right) = \bruch{1}{4} [/mm] , [mm] P \left(I^{c}\right) = \bruch{3}{4} [/mm]
Gesucht ist eine bedingte Wahrscheinlichkeit. Und zwar, dass eine Person krank wird unter der Bedingung, dass sie nicht geimpft ist, also:
[mm] P \left(K|I^{c} \right) = \bruch{P \left(I^{c}|K \right)*P\left(K\right)}{P \left(I^{c}|K \right)*P\left(K\right)+P \left(I^{c}|K^{c} \right)*P\left(K^{c}\right)}[/mm]

aber da fehlen mir jetzt Werte, die ich einsetzen kann z.B [mm] P\left(K\right) [/mm] und [mm]P\left(K^{c}\right) [/mm]

Andersrum hätte ich alle Werte, aber [mm]P \left(I^{c}|K \right)[/mm] ist die Wahrscheinlichkeit, dass jemand nicht geimpft ist unter der Bedingung, dass er Krank ist und das ist doch nicht gefragt.....
wo liegt der Fehler???????
Bitte bitte Hilfe!

        
Bezug
bedingte W´keiten: Antwort
Status: (Antwort) fertig Status 
Datum: 09:56 Fr 06.11.2009
Autor: hotblack

Hallo,

ich übernehm mal dein Notation...

> K = krank; I = geimpft
>  
> [mm]\bruch{1}{5}[/mm] der Kranken ist geimpft:  [mm]P \left(I|K \right) = \bruch{1}{5}[/mm]
> unter 12 Geimpften nur ein Kranker: [mm]P \left(K|I \right) = \bruch{1}{12}[/mm]
> [mm]P \left(I\right) = \bruch{1}{4}[/mm] , [mm]P \left(I^{c}\right) = \bruch{3}{4}[/mm]
> Gesucht ist eine bedingte Wahrscheinlichkeit. Und zwar,
> dass eine Person krank wird unter der Bedingung, dass sie
> nicht geimpft ist, also:
>  [mm]P \left(K|I^{c} \right) = \bruch{P \left(I^{c}|K \right)*P\left(K\right)}{P \left(I^{c}|K \right)*P\left(K\right)+P \left(I^{c}|K^{c} \right)*P\left(K^{c}\right)}[/mm]

soweit, so gut, ich verstehe allerdings nicht, warum du unterm bruchstrich einen so komplizierten Term stehen hast.
Nach Bayes' Theorem sollte unterm Burchstrich nur [mm]P\left(I^c\left)[/mm] stehen (und zusammengefasst tut es das ja auch)

> aber da fehlen mir jetzt Werte, die ich einsetzen kann z.B
> [mm]P\left(K\right)[/mm] und [mm]P\left(K^{c}\right)[/mm]

[mm]P\left(K\right)[/mm] kannst du auch einfach über Bayes ausrechnen:
[mm]P\left(I|K\right) = \bruch{P\left(K|I\right)*P\left(I\right)}{P\left(K\right)}[/mm]
also
[mm]P\left(K\right) = \bruch{P\left(K|I\right)*P\left(I\right)}{P\left(I|K\right)}[/mm]

[mm]P\left(I^c|K\right)[/mm] ist ja eigentlich auch schon gegeben, als Wahrscheinlichkeit, das ein Kranker nicht geimpft ist, also als Gegenereignis von [mm]P\left(I|K\right)[/mm]

Das kannst du dann einfach in die erste Gleichung einsetzen und solltest die Lösung erhalten.

Hoffe ich konnt helfen,
hotblack

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]