matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Matrizenbasis im komplexen best.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra - Matrizen" - basis im komplexen best.
basis im komplexen best. < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

basis im komplexen best.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:40 So 14.02.2010
Autor: muhmuh

Aufgabe
Ergänzen Sie die Vektoren
b_!= (i,i,1) und [mm] b_2 [/mm] (1+i, 1´1-i) zu einer Basis des C-Vektorraums [mm] C^{3} [/mm]

Hallo,

normalerweise bestimme ich basen durch einfaches Überlegen, hier komme ich so aber nicht weiter.

daher habe ich folgendes LGS aufgestellt:

r* [mm] \vektor{i \\ i \\ 1} [/mm] + s* [mm] \vektor{1+i \\ 1\\ 1-i} [/mm] + t*  [mm] \vektor{a \\ b\\ c}= \vektor{0 \\ 0\\0} [/mm]

Ich habe nun mehr unbekannte als Gleichungen, s gibt aber ja auch mehrere Basisergänzungsmöglichkeiten,
deswegen hab ich einfach c= i gesetzt

um dann herauszubekommen, dass r=-s=-t
und dann hab ich das Gleichungssystem weiter aufgelöst und so die einzelnen komponenten von a=x+iy herausbekommen.

[mm] b_3 [/mm] wäre daher =  [mm] \vektor{-1 \\ -1+i\\ i} [/mm]

ist die Vorgehensweise so richtig?

Ich habe nämlich nun versucht zu überprüfen ob die Vektoren nun alle linear unabhängig sind, aber im komplexen komme ich da mit dem Gaußverfahren nicht so richtig klar.

Hat mir jemand Tips für die Aufgabe,
gibts noch einen anderen Weg?

Danke,

lg

katja

        
Bezug
basis im komplexen best.: Antwort
Status: (Antwort) fertig Status 
Datum: 11:07 So 14.02.2010
Autor: abakus


> Ergänzen Sie die Vektoren
>  b_!= (i,i,1) und [mm]b_2[/mm] (1+i, 1´1-i) zu einer Basis des
> C-Vektorraums [mm]C^{3}[/mm]
>  Hallo,
>  
> normalerweise bestimme ich basen durch einfaches
> Überlegen, hier komme ich so aber nicht weiter.
>  
> daher habe ich folgendes LGS aufgestellt:
>  
> r* [mm]\vektor{i \\ i \\ 1}[/mm] + s* [mm]\vektor{1+i \\ 1\\ 1-i}[/mm] + t*  
> [mm]\vektor{a \\ b\\ c}= \vektor{0 \\ 0\\0}[/mm]
>  
> Ich habe nun mehr unbekannte als Gleichungen, s gibt aber
> ja auch mehrere Basisergänzungsmöglichkeiten,
>  deswegen hab ich einfach c= i gesetzt
>  
> um dann herauszubekommen, dass r=-s=-t
>  und dann hab ich das Gleichungssystem weiter aufgelöst
> und so die einzelnen komponenten von a=x+iy
> herausbekommen.
>  
> [mm]b_3[/mm] wäre daher =  [mm]\vektor{-1 \\ -1+i\\ i}[/mm]
>  
> ist die Vorgehensweise so richtig?
>  
> Ich habe nämlich nun versucht zu überprüfen ob die
> Vektoren nun alle linear unabhängig sind, aber im
> komplexen komme ich da mit dem Gaußverfahren nicht so
> richtig klar.
>  
> Hat mir jemand Tips für die Aufgabe,
>  gibts noch einen anderen Weg?
>  
> Danke,

Hallo Katja,
ich würde a=0 und [mm] c\ne [/mm] 0 ansetzen.
Für a=0 müssen r und s Null sein, während t noch beliebig ist.
Für r=0, s=0 und t ungleich 0 kann dann die dritte Zeile nicht Null werden.
Gruß Abakus

>  
> lg
>  
> katja


Bezug
                
Bezug
basis im komplexen best.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:16 So 14.02.2010
Autor: muhmuh

hae, nun bin ich etwas confused,

soll ich nicht gerade eine Basis konstruieren mit a,b,c sodass das ganze null wird?


hm kann die frage nicht mehr rückgängig machen...
sorry stand auf dem schlauch,
dafuer dass die vektoren linear unabhängig sind und das muss ja fuer eine basis gelten, müssen r,s,t =0 sein,
und durch deine wahl der basis ist das erzwungen.

danke
nun hab ichs verstanden:)




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]