matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Numerikbandmatrix
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Numerik" - bandmatrix
bandmatrix < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

bandmatrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:31 Di 15.04.2008
Autor: lenz

Aufgabe
zeigen sie das der gauß'sche algorithmus angewandt auf eine bandmatrix der bandbreite m,
matrizen R mit einer bandbreite [mm] \le [/mm] 2m-1 und L mit höchstens m nicht null elementen pro spalte liefert

hallo
die bandbreite [mm] m=max_{1 \le i,j \le n}\{|i-j|;a_{ij} \not=0\}+1, [/mm]
es geht um die zerlegung einer bandmatrix A in eine rechte obere dreiecksmatrix R mittels frobeniusmatrizen deren inverses produkt eine unipotente untere dreiecksmatrix L ergibt
soweit ich das verstanden hab.
das L höchstens m einträge pro spalte hat geht aus der definition der frobeniusmatrizen
hervor,nur mit oberen dreiecksmatrix wundert mich das,da frobeniusmatrizen als unipotente untere dreiecksmatrizen die rechte obere seite ja unberührt lassen sollten,womit die bandbreite ja m wäre.
vielleicht kann mir ja jemand einen tip geben
gruß lenz

        
Bezug
bandmatrix: Antwort
Status: (Antwort) fertig Status 
Datum: 23:01 Di 15.04.2008
Autor: zahllos

Hallo lenz,

beim Gaußalgorithmus werden die von Null verschiedenen, unterhalb
der Hauptdiagonlen liegenden Elemente einer Spalte der Matrix A
mittels Zeilenumformungen zu Null gemacht. Unter Umständen muss
man Zeilenvertauschungen vornehmen, nämlich dann, wenn das Hauptdiagonalelement von A gleich Null ist.
Das bedeutet:
Um die erste Spalte von A auszuräumen, brauche ich maximal m-1 Zeilenumformungen, also hat die erste Spalte der Matrix L höchstens
m von Null verschiedene Elemente (die 1 auf der Hauptdiagonalen
plus die m-1  ersten Elemente unterhalb der Hauptdiagonalen).
Wenn ich bei diesen Zeilenumformungen auch Zeilenvertauschungen vornehmen muss, so ist der ungünstigste Fall der, bei dem die Zeile
m der Matrix A mit der ersten Zeile der Matrix A vertauscht werden
muss, in diesem Fall hat die erste Zeile der Matrix R maximal 2m-1
von Null verschiedene Elemente, nämlich das Diagonalelement und
die ersten 2m-2 Elemente oberhalb der Hauptdiagonalen.
Wenn die erste Spalte der Matrix A mit dem Gaußalgorithmus umgeformt ist, kann ich die gleiche Argumentation auf die jetzt entstandene Umtermatrix anwenden. Insgesamt folgt also: Die linke untere Dreiecksmatrix hat höchstens Bandbreite m und die rechte obere Dreiecksmatrix R hat höchstens Bandbreite 2m-1.
(Wenn bei der Durchführung des Algorithmus keine Zeilenver-
tauschungen erforderlich sind, hat R ebenfalls die Bandbreite m)


Bezug
                
Bezug
bandmatrix: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:29 Mi 16.04.2008
Autor: lenz

alles klar
danke für die antwort
gruß lenz

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]