matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungb bestimmen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integralrechnung" - b bestimmen
b bestimmen < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

b bestimmen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 18:41 Sa 20.09.2008
Autor: manolya

Aufgabe
Funktion  f( x)= -1/4 x² + x .
Bestimmt Sie den Wert b>0 so, dass die Fläche unterhalb der x- Achse genau so groß ist wie die Fläche oberhalb der x- Achse.

[Dateianhang nicht öffentlich]

ABEND,



[mm] \integral_{4}^{b}{-1/4*x^2+x dx} [/mm] =2,6

diese Rechnung habe ich,jedoch weiß ich dann nicht wie ich die "Stammfkt"nach b auflösen


Danke im Voraus.

Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
        
Bezug
b bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:52 Sa 20.09.2008
Autor: Steffi21

Hallo, dein Ansatz ist schon gut,

[mm] \integral_{4}^{b}{-\bruch{1}{4}x^{2}+x dx}=2\bruch{2}{3} [/mm]

zunächst berechne die Stammfunktion:

[mm] F(x)=-\bruch{1}{12}x^{3}+\bruch{1}{2}x^{2} [/mm]

jetzt kannst du die obere Grenze b und die untere Grenze 4 einsetzen, du hast eine Gleichung, die nur noch die Unbekannte b enthält,

Steffi




Bezug
                
Bezug
b bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:57 Sa 20.09.2008
Autor: manolya

[mm] -\bruch{1}{12}*b^{3} +0,5*b^{2} [/mm] -5,2 =0

ich weiß dann nicht wie ich es weiter auflösen soll, b ausklammern geht nicht ;Lpolynomdivision ist naja muss erst eine echt ungerade zahl finden  
hab keine idee!!!

Bezug
                        
Bezug
b bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:08 Sa 20.09.2008
Autor: Steffi21

Hallo, setzen wir die Grenzen b und 4 ein:

[mm] -\bruch{1}{12}b^{3}+\bruch{1}{2}b^{2}-(5\bruch{1}{3}-8)=2\bruch{2}{3} [/mm]

[mm] -\bruch{1}{12}b^{3}+\bruch{1}{2}b^{2}-(-2\bruch{2}{3})=2\bruch{2}{3} [/mm]

[mm] -\bruch{1}{12}b^{3}+\bruch{1}{2}b^{2}=0 [/mm]

jetzt kannst du wunderbar [mm] b^{2} [/mm] ausklammern,
Steffi




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]