matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und Reihenb-adische brüche
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Reihen" - b-adische brüche
b-adische brüche < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

b-adische brüche: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:19 Mi 17.09.2008
Autor: Woaze

Aufgabe
jede zahl [mm] |x|\le\bruch{1}{2} [/mm] lässt sich darstellen als [mm] \summe_{i=1}^{\infty}\bruch{a_k}{3^k} [/mm] mit [mm] a_k [/mm] ={-1,0,1}

jede reelle Zahl auch die mit [mm] |x|\le\bruch{1}{2} [/mm] lässt sich als 3-adischer bruch der Form [mm] \summe_{i=1}^{\infty}\bruch{a_k}{3^k} [/mm] darstellen.

Aber wie soll ich drauf kommen, dass die [mm] a_k [/mm] nur 1,0 oder -1 sind?

        
Bezug
b-adische brüche: Antwort
Status: (Antwort) fertig Status 
Datum: 17:58 Mi 17.09.2008
Autor: abakus


> jede zahl [mm]|x|\le\bruch{1}{2}[/mm] lässt sich darstellen als
> [mm]\summe_{i=1}^{\infty}\bruch{a_k}{3^k}[/mm] mit [mm]a_k[/mm] ={-1,0,1}
>  jede reelle Zahl auch die mit [mm]|x|\le\bruch{1}{2}[/mm] lässt
> sich als 3-adischer bruch der Form
> [mm]\summe_{i=1}^{\infty}\bruch{a_k}{3^k}[/mm] darstellen.
>  
> Aber wie soll ich drauf kommen, dass die [mm]a_k[/mm] nur 1,0 oder
> -1 sind?

Hallo,
wie lautet denn die Aufgabe???
Eventuell so: "Beweise, dass ..."?
Und die -1, 0 und 1 sind nicht etwa vorausgesetzt?

Für diesen Fall würde ich zwei Dinge empfehlen:
1) Nachweis, dass die Intervallgrenzen (-0,5 und +0,5) auf diese Art darstellbar sind
2) Nachweis, dass es für jede reelle Zahl dieses Intervalls eine aus diesen Dreierpotenzen zu bildende Intervallschachtelung gibt, deren Breite gegen Null geht.
Gruß Abakus


Bezug
                
Bezug
b-adische brüche: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:51 Mi 17.09.2008
Autor: Woaze

das war schon so gemeint, man beweise, dass obiges mit den zahlen [mm] a_k [/mm] = {1,0-1} darstellbar ist.

Aber ich kann nicht mal einen 3- adischen bruch für 1/2 aufstellen so wie ich gerade schmerzlich feststellen musste. Gibts da irgent einen algorithmus?

Ich hab soweit mal 1/2 = 1/3 + 1/9 + 0/27 + 1/81 + ... mit allen [mm] a_k [/mm] immer 1 und dass ist aber nur angenommen, ncht bewiesen ich muss also noch zeigen, dass [mm] \summe_{k=1}^{\infty}\bruch{1}{3^k} [/mm] gegen 1/2 konvergiert und das tuts aber auch (geometrische reihe), man bin ich blöd;-)

Aber wie soll ich das mit der Intervallverschachtelung hinkriegen?


Bezug
                        
Bezug
b-adische brüche: Antwort
Status: (Antwort) fertig Status 
Datum: 19:46 Mi 17.09.2008
Autor: abakus


> das war schon so gemeint, man beweise, dass obiges mit den
> zahlen [mm]a_k[/mm] = {1,0-1} darstellbar ist.
>  
> Aber ich kann nicht mal einen 3- adischen bruch für 1/2
> aufstellen so wie ich gerade schmerzlich feststellen
> musste. Gibts da irgent einen algorithmus?
>  
> Ich hab soweit mal 1/2 = 1/3 + 1/9 + 0/27 + 1/81 + ... mit
> allen [mm]a_k[/mm] immer 1 und dass ist aber nur angenommen, ncht
> bewiesen ich muss also noch zeigen, dass
> [mm]\summe_{k=1}^{\infty}\bruch{1}{3^k}[/mm] gegen 1/2 konvergiert
> und das tuts aber auch (geometrische reihe), man bin ich
> blöd;-)
>  
> Aber wie soll ich das mit der Intervallverschachtelung
> hinkriegen?
>  

Du kriegst jeden Bruch mit dem Nenner 9 hin:
0, 1/9, 1/3 - 1/9, 1/3, 1/3 + 1/9

Du kriegst auch jeden Bruch mit dem Nenner 27 hin, indem du
- diese o.g. Brüche beibehältst (0/27, 3/27, 6/27, 9/ 27, ...)
- oder davon 1/27 subtrahierst  (-1/27, 2/27, 5/27, 8/ 27, ...)
- oder dazu 1/27 addierst (1/27, 4/27, 7/27, 10/ 27, ...)

Du kriegst auch jeden Bruch mit dem Nenner 81 hin, indem du
- die 27-er Brüche beibehältst
- oder davon 1/81 subtrahierst
- oder dazu 1/81 addierst

...
Die Intervalle werden immer kleiner.

Bezug
                                
Bezug
b-adische brüche: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 15:14 Do 18.09.2008
Autor: Woaze

Also ich nehme dann ein x beliebig aus R und sag meinetwegen das dieses x zwischen 1/81 und 2/81 liegt und dann lass ich diesen Intervall gegen das x kleiner werden. Aber wie schreib ich das hin?

Da brauch ich doch Folgen und die müssen aber allgemein irgentwie gegen ein beliebiges x konvergieren. Aber dann mach ich's ja mit Chauchy Folgen, oder?



Bezug
                                        
Bezug
b-adische brüche: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:23 Sa 20.09.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]