matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und Reihenaussagen über folgen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Folgen und Reihen" - aussagen über folgen
aussagen über folgen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

aussagen über folgen: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 22:43 Mi 07.06.2006
Autor: sonisun

Aufgabe
diese Aussagen soll ich entweder Beweisen oder mit einem Gegenbeispiel wiederlegen. [mm] a_{n} [/mm] ist eine Folge reeller oder komplexer Zahlen
a) ist [mm] (na_{n}) [/mm] beschränkt, so ist [mm] (a_{n}) [/mm] eine Nullfolge
b) Konvergieren [mm] (a_{2k}) [/mm] und [mm] (a_{3k}) [/mm] gegen den selben Grenzwert, so ist auch [mm] (a_{n}) [/mm] konvergent
c) ist [mm] (a_{n}/n)_{n} [/mm] eine Nullfolge, so ist [mm] (a_{n})_{n} [/mm] beschränkt.
d) ist [mm] (a_{n}^{2}) [/mm] eine Nullfolge, so ist auch [mm] (a_{n}) [/mm] eine Nullfolge  

hallo, ich habe schon meine Lösung so weit ich sie habe hingeschrieben, bin mir aber bei a) und b) noch unsicher und c) und d) krieg ich net selbst hin. Bitte helft mir

a) ich denke wahr: n ist immer eine konvergente Folge und konvergiert gegen sich selbst, da [mm] (na_n)beschränkt [/mm] ist ist auch [mm] a_{n} [/mm] beschränkt und konvergiert. dann gilt [mm] \lim(na_n)=0 [/mm] und [mm] \lim(n)*lim(a_{n})=0, [/mm] da n ungleich null ist, muss [mm] a_{n} [/mm] eine Nullfolge sein
b) wahr, weil alle Folgenmitglieder von [mm] a_n [/mm] in einer der beiden dortstehenden Teilfolgen enthalten sind und die gegen den selben Grenzwert konvergieren. folglich ist [mm] a_{n} [/mm] konvergent
c) hier fehlt mir noch ne idee
d) [mm] \lim a_{n}^{2} [/mm] =0 ich glaube, das ist flasch, kann es aber net begründen, hast du ne idee?



        
Bezug
aussagen über folgen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:25 Do 08.06.2006
Autor: mathemaduenn

Hallo sonisun,
> a) ich denke wahr: n ist immer eine konvergente Folge und
> konvergiert gegen sich selbst, da [mm](na_n)beschränkt[/mm] ist ist
> auch [mm]a_{n}[/mm] beschränkt und konvergiert. dann gilt
> [mm]\lim(na_n)=0[/mm] und [mm]\lim(n)*lim(a_{n})=0,[/mm] da n ungleich null
> ist, muss [mm]a_{n}[/mm] eine Nullfolge sein

Beschränkt bedeutet [mm] ||n*a_n||
>  b) wahr, weil alle Folgenmitglieder von [mm]a_n[/mm] in einer der
> beiden dortstehenden Teilfolgen enthalten sind und die
> gegen den selben Grenzwert konvergieren. folglich ist [mm]a_{n}[/mm]
> konvergent

Es gibt auch Zahlen die weder durch 2 noch durch 3 teilbar sind und zwar unendlich viele.

>  c) hier fehlt mir noch ne idee

Ich würde davon ausgehen das dies nicht stimmt und eine Folge suchen die langsamer steigt als n aber unbeschränkt ist.

>  d) [mm]\lim a_{n}^{2}[/mm] =0 ich glaube, das ist flasch, kann es
> aber net begründen, hast du ne idee?

Stetige Funktionen bilden konvergente Folgen auf konvergente Folgen ab und für den Grenzwert gilt:
[mm] \lim_{n\to \infty} a_n=c \Rightarrow \lim_{n\to \infty} f(a_n)=f(c)[/mm]
vllt. kannst Du das ja verwenden. Ich denke aber das die Aussage richtig ist.
viele Grüße
mathemaduenn

Bezug
        
Bezug
aussagen über folgen: Aufgabe a.)
Status: (Antwort) fertig Status 
Datum: 11:40 Do 08.06.2006
Autor: Roadrunner

Hallo sonisun!


Hier würde ich folgendermaßen argumentieren:

[mm] $\left [/mm] \ [mm] \text{ist beschränkt}$ $\gdw$ $\left| \ n*a_n \ \right| [/mm] \ = \ [mm] |n|*\left| \ a_n \ \right| [/mm] \ = \ [mm] n*\left| \ a_n \ \right| \le [/mm] \ C$

[mm] $\Rightarrow$ $\left| \ a_n \ \right| [/mm] \ = \ [mm] \left| \ a_n-\red{0} \ \right| [/mm] \ [mm] \le [/mm] \ [mm] \bruch{C}{n} [/mm] \ \ [mm] \red{< \ \varepsilon}$ [/mm] , da [mm] $\bruch{C}{n}$ [/mm] Nullfolge.

Damit haben wir folgende Ungleichheitskette:   $0 \ [mm] \le [/mm] \ [mm] \left| \ a_n \ \right| [/mm] \ < \ [mm] \varepsilon$ [/mm]

Und daraus folgt auch, dass [mm] $a_n$ [/mm] eine Nullfolge ist.


Gruß vom
Roadrunner


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]