matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationaufgeteilte Funktion
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Differentiation" - aufgeteilte Funktion
aufgeteilte Funktion < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

aufgeteilte Funktion: differenzieren...
Status: (Frage) beantwortet Status 
Datum: 17:51 Mi 19.12.2007
Autor: weihnachtsman

Aufgabe
[mm] f(x)=\begin{cases} |x-b|, & \mbox{für } x \ge 0 \\ \bruch{1}{a^{2}(x+1)^{2}+1}, & \mbox{für } x < 0 \end{cases} [/mm]

f:: [mm] \IR--> \IR [/mm]    a,b [mm] \in\IR [/mm]

habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

bestimme , ob f differenzierbar in ganz [mm] \IR [/mm] ist. und falls ja unter welchen Bedingungen an a und b

Für den ersten teil würde ich |x-b| auteilen in
x-b für [mm] x\ge [/mm] 0 und in
-x+b für x<0

dann
[mm] \limes_{h\rightarrow 0} \bruch{(x-b+h)-(x-b)}{h}=\bruch{h}{h}=1 [/mm]
[mm] \limes_{h\rightarrow 0} \bruch{(-x+b+h)-(-x+b)}{h}=\bruch{h}{h}=1 [/mm]
--> |x-b|  differenzierbar für alle b [mm] \in \IR, [/mm] da ja der grenzwert unabhängig von b ist

aber eigentlich sind da betragsfunktionen wegen dem knick nicht differenziebar oder?





        
Bezug
aufgeteilte Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:03 Mi 19.12.2007
Autor: weihnachtsman

hab da oben glaubig mist geschrieben, man muss die fälle betrachten

|x-b|

x-b für x [mm] \ge [/mm]  b
x-b für x < b

kann man aber trotzdem so weiter machen, mit den beiden limes wie oben?

Bezug
        
Bezug
aufgeteilte Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 23:45 Mi 19.12.2007
Autor: Zneques

Hallo,

wie du noch bemerkt hast musst du nach x<b und [mm] x\ge [/mm] b aufteilen.
Die Differenzenquotienten hatten trotzdem einen kleinen Fehler :
[mm] \limes_{h\rightarrow 0} \bruch{((x+h)-b)-(x-b)}{h}=\bruch{h}{h}=1 [/mm]
[mm] \limes_{h\rightarrow 0} \bruch{(-(x+h)+b)-(-x+b)}{h}=\bruch{-h}{h}=-1 [/mm]
Somit ist der erste Teil der Funktion bei b nicht differenzierbar.
Man muss b daher so wählen, dass die Stelle nicht in den Bereich [mm] x\ge [/mm] 0 fällt.
Danach sollte auch der zweite Teil nach nicht diff.-baren Stellen überprüft werden.
Zum Schluss geht es um die Stelle x=0, an der beide Teile aneinander gesetzt werden.
Dort muss [mm] \limes_{x\rightarrow 0+}\bruch{f(x)-f(0)}{x}=\limes_{x\rightarrow 0+}(|x-b|)'=\limes_{x\rightarrow 0-}(\bruch{1}{a^{2}(x+1)^{2}+1})'=\limes_{x\rightarrow 0-}\bruch{f(x)-f(0)}{x} [/mm] gelten.

Ciao.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]