matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDiskrete Mathematikasymptotische Notation
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Diskrete Mathematik" - asymptotische Notation
asymptotische Notation < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

asymptotische Notation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:19 Do 12.03.2009
Autor: csak1162

Aufgabe
[a]Datei-Anhang

meine Fragen dazu

Aufgabe 1:

was ist bei der Frage bzgl L'Hopital gemeint, muss ich da nur sagen wann er angewendet werden kann und das mit den ableitungen?

wie kann ich (a) bis (f) zeigen, ich weiß nicht wie ich da vorgehen soll??





Dateianhänge:
Anhang Nr. 1 (Typ: pdf) [nicht öffentlich]
        
Bezug
asymptotische Notation: Antwort
Status: (Antwort) fertig Status 
Datum: 17:20 Do 12.03.2009
Autor: Marcel

Hallo,

> [a]Datei-Anhang
>  meine Fragen dazu
>  
> Aufgabe 1:
>
> was ist bei der Frage bzgl L'Hopital gemeint, muss ich da
> nur sagen wann er angewendet werden kann und das mit den
> ableitungen?

ich denke schon. Meiner Meinung nach ist der Sinn der Frage, den Satz von Hospital genauestens zu wiederholen. Vgl. z.B. []Wikipedia: Hospital.

Ergänzend möchte ich dazu anmerken, dass, wenn [mm] $g:=\lim_{\IR \ni x \to \infty} [/mm] h(x)$ existiert, dann auch [mm] $\lim_{\IN \ni n \to \infty} [/mm] h(n)$ existiert mit [mm] $g=\lim_{\IN \ni n \to \infty} h(n)\,.$ [/mm]
  

> wie kann ich (a) bis (f) zeigen, ich weiß nicht wie ich da
> vorgehen soll??

Das hängt davon ab, wie ihr die Landau-Symbole definiert habt bzw. welche Charakterisierungen ihr von [mm] $\mathcal{O}$ [/mm] etc. kennt. Z.B. scheint es mir bei Euch sinnvoll, die []mathematischen Definition heranzuziehen (wenn Euch eine andere zugrundeliegt, solltest Du zunächst die jeweilige Äquivalenz der mathematischen Definition zu der Deinen beweisen). Denn dann kann man sicher auch, zumindest teilweise, Hospital verwenden.

Aber mache Dir bei jeder Aufgabe ( a) bis f) )vll. erstmal klar, was denn dort eigentlich behauptet wird. Vorher macht das Bearbeiten einer solchen Aufgabe eigentlich für Dich keinen Sinn, und die Lösung wirst Du auch nicht verstehen, wenn Du Dir die Behauptungen noch nicht klargemacht hast.
Z.B.
[mm] $n*\log(n)=\mathcal{O}(n^2)$ [/mm] (anstelle des [mm] $\in$, [/mm] wie es bei Euch steht, schreibt man oft halt auch gerne $=$)
gilt genau dann, wenn
[mm] $$\limsup_{n \to \infty} \left|\frac{n*\log(n)}{n^2}\right|=\limsup_{n \to \infty} \frac{n*\log(n)}{n^2} [/mm] < [mm] \infty\,.$$ [/mm]

Wenn Du mit dem [mm] $\limsup$ [/mm] allerdings (noch) nicht vertraut bist, dann solltest Du in obigem Wiki-Link in die Definition mit den Quantoren gucken (in die mit $x [mm] \to \infty$) [/mm] (diese Definitionen sind selbstverständlich äquivalent zueinander):
Demnach wäre [mm] $n*\log(n)=\mathcal{O}(n^2)$ [/mm] genau dann, wenn es ein $c > 0$ so gibt, dass [mm] $|n*\log(n)| \le c*|n^2|$ [/mm] für alle natürlichen $n$ ab einem gewissen [mm] $n_0\,.$ [/mm]
Ich hoffe nun, dass bei Euch [mm] $\log(.)$ [/mm] der [mm] $\ln(.)$ [/mm] ist (Logarithmus naturalis). Ansonsten müßtest Du in der folgenden Argumentation sowas wie [mm] $\log_a(.)=\frac{\ln(.)}{\ln(a)}$ [/mm] benutzen und damit müßte man das $c$ und/oder das [mm] $n_0$ [/mm] gegebenenfalls vergößern.

Es gilt jedenfalls [mm] $n*\ln(n)=\mathcal{O}(n^2)\,,$ [/mm] denn es gilt (mit (je) einem noch zu bestimmenden $c [mm] >\, [/mm] 0$ (und, später, [mm] $n_0 \in \IN$)) [/mm]
[mm] $$|n*\ln(n)| \le c*|n^2|$$ [/mm]
[mm] $$\gdw \ln(n) \le c*n\,$$ [/mm]
[mm] $$\gdw \frac{\ln(n)}{n} \le c\,.$$ [/mm]

Wegen Hospital (Fall " [mm] $\infty/\infty$ [/mm] ") strebt [mm] $\frac{\ln(n)}{n}$ [/mm] gegen den gleichen Wert, gegen den [mm] $\frac{1/n}{1}$ [/mm] bei $n [mm] \to \infty$ [/mm] strebt, insbesondere ist [mm] $\left(\frac{\ln(n)}{n}\right)_n$ [/mm] konvergent, damit beschränkt und damit auch nach oben beschränkt. Folglich existiert eine Konstante $c > 0$, so dass [mm] $\frac{\ln(n)}{n} \le [/mm] c$ für alle $n [mm] \ge n_0$ [/mm] mit einem festen [mm] $n_0 \in \IN$. [/mm] Also folgt [mm] $n*\log(n)=\mathcal{O}(n^2)\,$ [/mm]  $(n [mm] \to \infty)\,.$ [/mm]  

P.S.:
Alternativ:
Falls Dir die Ungleichung [mm] $\ln(x) \le [/mm] x-1$ für alle $x > 0$ bekannt ist, so folgt damit
[mm] $$\frac{\ln(n)}{n} \le \frac{n-1}{n} \le [/mm] 1$$
für alle $n [mm] \ge 1\,.$ [/mm] Du kannst hier also sogar präzise $c=1$ und dann [mm] $n_0=1$ [/mm] wählen, um [mm] $n*\ln(n)=\mathcal{O}(n^2)$ [/mm] ($n [mm] \to \infty$) [/mm] einzusehen.

Gruß,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]