matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche Differentialgleichungenasymptotische Entwicklung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Gewöhnliche Differentialgleichungen" - asymptotische Entwicklung
asymptotische Entwicklung < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

asymptotische Entwicklung: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 10:38 So 03.07.2016
Autor: sissile

Aufgabe
Man bestimme die asymptotische Entwicklung einer Lösung der Differentialgleichung [mm] \epsilon [/mm] x'(t)+x(t)=sin(t), ohne die explizite Lösung zu verwenden. Was kann man bezüglich der Lösung des Anfangswertproblems mit der Anfangsbedingung x(0)=1 tun?

Hallo,

Ich schreibe x(t) als [mm] x_{\epsilon}(t)=x_0(t)+\epsilon x_1(t)+ \epsilon^2 x_2(t)+O(\epsilon^3) [/mm]

Ich setze die formale Reihe in mein geestörtes Problem ein:
[mm] \epsilon x_0'(t)+ \epsilon^2 x_1'(0) [/mm] + [mm] x_0(t) [/mm] + [mm] \epsilon x_1(t) [/mm] + [mm] \epsilon^2 x_2(t) [/mm] + [mm] O(\epsilon^3) [/mm] = sin(t)
Koeffizientenvergleich:
[mm] \epsilon^0: x_0(t)=sin(t) [/mm]
[mm] \epsilon^1: x_0'(t)+x_1(t)=0 \Rightarrow x_1(t)=-cos(t) [/mm]
[mm] \epsilon^2: x_1'(t)+x_2(t)=0 \Rightarrow -sin(t)=x_2(t) [/mm]

[mm] \Rightarrow x_{\epsilon} [/mm] (t)= sin(t) - [mm] \epsilon [/mm] cos(t) - sin(t) [mm] \epsilon^2 [/mm] + [mm] O(\epsilon^3) [/mm]

Nun ist mein Problem die Anfangsbedingung: x(0)=1
[mm] x_0(0)+\epsilon x_1(0)+\epsilon^2 x_2(0)+O(\epsilon^3)=1 [/mm]
[mm] \Rightarow x_0(0)=1, x_1(0)=0, x_2(0)=0 [/mm]
was nicht mit den obigen Ergebnissen zusammenpasst.

Das Problem ist ja dass das Epsilon neben den höchsten Term steht.
Habt ihr einen Tipp?
LG,
Sissi

        
Bezug
asymptotische Entwicklung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 10:53 Mo 04.07.2016
Autor: sissile

Hallo,
Meine Idee:

Variablentransformation: [mm] \psi= \frac{t}{\epsilon^{\alpha}}, \alpha>0 [/mm] einsetzen:
[mm] \epsilon^{1-\alpha} \chi'(\psi) [/mm] + [mm] \chi(\psi)= sin(\psi \epsilon^{\alpha}) [/mm]
[mm] \chi(0)=1 [/mm]

Ansatz: [mm] \chi(\psi)=\chi_0(\psi)+\chi_1(\psi)* \epsilon [/mm] + [mm] O(\epsilon^2) [/mm] einsetzen:
[mm] \epsilon^{1- \alpha}( \chi_0'(\psi) [/mm] + [mm] \chi_1'(\psi) \epsilon [/mm] + [mm] O(\epsilon^2)) [/mm] + [mm] \chi_0 (\psi) [/mm] + [mm] \chi_1(\psi) \epsilon [/mm] + [mm] O(\epsilon^2) [/mm] = [mm] sin(\psi \epsilon^{\alpha}) [/mm]
[mm] \chi_0(0)+\epsilon*\chi_1(0)+ O(\epsilon^2)=1 [/mm]

Ich setzte [mm] \alpha=1 [/mm] und erhalte:
[mm] \chi_0'(\psi) [/mm] + [mm] \chi_1'(\psi) \epsilon [/mm] + [mm] \chi_0 (\psi) [/mm] + [mm] \chi_1(\psi) \epsilon [/mm] + [mm] O(\epsilon^2) [/mm] = [mm] sin(\psi \epsilon) [/mm]
Nun ist [mm] sin(\psi \epsilon)=O(\epsilon) [/mm] also Koeffizientenvergleich:

[mm] \epsilon^0: \chi_0' (\psi)+ \chi_0 (\psi)=0, \chi_0(0)=1 [/mm]
[mm] \Rightarrow \chi_0 (\psi)= e^{-\psi} [/mm]

[mm] \epsilon^1: \chi_1'(\psi)+\chi_1(\psi)= [/mm] ??, [mm] \chi_1(0)=0 [/mm]
Was soll ich hier aber für die rechte Seite einsetzten, ich dachte an [mm] sin(\psi \epsilon) \approx \psi \epsilon [/mm] und daher  [mm] \chi_1'(\psi)+\chi_1(\psi)= \psi. [/mm]
Was zu [mm] \chi_1(\psi)=\psi+ e^{-\psi} [/mm] -1 führt.

Ist das korrekt? Wie mache ich weiter?

LG,
Sissi


Bezug
                
Bezug
asymptotische Entwicklung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:20 Mi 06.07.2016
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]