matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenRationale Funktionenasymptotenfunktion
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Rationale Funktionen" - asymptotenfunktion
asymptotenfunktion < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

asymptotenfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:10 Mi 31.08.2005
Autor: karpfen

[Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.]

also ich habe eine eine funktion gegeben

f(x) =  [mm] \bruch{ 2x²+3x }{ (x+3)²} [/mm]

nach meinen bisher errungenen kenntnissen muss ich doch 2 mal nacheinander die polynomdivison mit (x+3) ausführen,oder?!
leider geht dies schon beim ersten mal nicht auf
ich erhalte dann

f(x) = [mm] \bruch{(2x-3 + \bruch{9}{x+3})(x+3)}{(x+3)²} [/mm]

meine frage also wie komme ich dann an die asymptotenfunktion?


        
Bezug
asymptotenfunktion: Weiter machen ...
Status: (Antwort) fertig Status 
Datum: 14:19 Mi 31.08.2005
Autor: Roadrunner

Hallo karpfen,

[willkommenmr] !!


Da bist Du doch schon auf einem richtigen weg ...


> f(x) = [mm]\bruch{(2x-3 + \bruch{9}{x+3})(x+3)}{(x+3)²}[/mm]


Das schreiben wir mal um, nachdem wir zunächst gekürzt haben:

[mm]f(x) \ = \ \bruch{2x-3 + \bruch{9}{x+3}}{x+3} \ = \ \bruch{2x-3}{x+3} + \bruch{\bruch{9}{x+3}}{x+3} \ = \ \bruch{2x-3}{x+3} + \bruch{9}{(x+3)^2}[/mm]


Nun für den vorderen Bruch die zweite MBPolynomdivision durchführen.

Ich erhalte als Asymptotenfunktion:  [mm] $y_A [/mm] \ = \ 2$


Gruß vom
Roadrunner


Bezug
        
Bezug
asymptotenfunktion: nachtrag des authors
Status: (Frage) beantwortet Status 
Datum: 14:22 Mi 31.08.2005
Autor: karpfen

leider habe ich, da ich neu in diesem forum bin, nicht gefunden wo  ich meine frage editieren kann, deswegen mach ich einen neuen beitrag

ich hab jetzt einfach mal die 2. polynomdivision ausgeführt

mein ergeniss war

2 - [mm] \bruch{9}{x} +\bruch{27}{x²} [/mm] ......

wenn ich hier das verhalten auf  [mm] \limes_{x\rightarrow\infty} [/mm] untersuche müsste doch schlicht und einfach 2 rauskommen oder? ist das dann auch die asmptotenfunktion a(x) = 2 ?

wäre nett wenn mir das jemand bestätigen könnte




Edit: roadrunner war schneller als ich meine vermutung abtippen konnte!
damit wäre alles geklärt! DANKE
ps: ich denke ihr werdet mich hier ab heute öfters sehen!

Bezug
                
Bezug
asymptotenfunktion: Polynomdivision falsch
Status: (Antwort) fertig Status 
Datum: 14:38 Mi 31.08.2005
Autor: Roadrunner

Hallo karpfen!


Das Endergebnis mit der Asymptote stimmt. Allerdings ist Dir bei der Poynomdivision etwas verquert gelaufen.


Es muss hier am Ende heißen:  $f(x) \ = \ 2 - [mm] \bruch{9}{x+3} [/mm] + [mm] \bruch{9}{(x+3)^2}$ [/mm]

Bitte nochmals nachrechnen / kontrollieren ...


Gruß vom
Roadrunner


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]