matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Sonstigesarithmetische folge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Sonstiges" - arithmetische folge
arithmetische folge < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

arithmetische folge: folge gesucht
Status: (Frage) beantwortet Status 
Datum: 21:36 Mi 25.01.2006
Autor: friteuse

Aufgabe
Die Summe der ersten drei Glieder ein arithmetischen Folge ist 15 und die Summe ihrer Kehrwerte ist 59/45.
Bestimmen Sie die Glieder der Folge.

es geht hier um die ersten drei elemente das istmir klar :
also x0+x1+x2+x3=15 oder anders 4*x0+6d=15 ...
aber wie gehts weiter?

        
Bezug
arithmetische folge: Antwort
Status: (Antwort) fertig Status 
Datum: 15:23 Do 26.01.2006
Autor: Paulus


> die summe der ersten drei glieder ein arithmetischen folge
> ist 15 und die summe ihrer kehrwerte ist 59/45. bestimmen
> sie die glieder der folge.
>  es geht hier um die ersten drei elemente das istmir klar
> :
>  also x0+x1+x2+x3=15 oder anders 4*x0+6d=15 ...
>  aber wie gehts weiter?

So klar scheint mir das nun doch wieder nicht zu sein. Meiner Meinung nach sind die ersten drei Glieder, wenn du mit [mm] $x_0$ [/mm] beginnst, nur die Glieder
[mm] $x_0$ [/mm] , [mm] $x_1$ [/mm] und [mm] $x_2$ [/mm]

Somit lautet die erste Gleichung:
[mm] $x_0+x_1+x_2=15$ [/mm]

mit [mm] $x_1=x_0+d$ [/mm] und [mm] $x_2=x_0+2d$ [/mm] also:

[mm] $3x_0+3d=15$ [/mm]

oder

[mm] $x_0+d=5$ [/mm]

Das mittlere Glied ist also 5.

Die drei Glieder sind also 5-d, 5 und 5+d

Nun zum 2. Teil:

[mm] $\bruch{1}{5-d}+\bruch{1}{5}+\bruch{1}{5+d}=\bruch{59}{45}$ [/mm]

[mm] $\bruch{1}{5-d}+\bruch{1}{5+d}=\bruch{10}{9}$ [/mm]

[mm] $\bruch{5+d+5-d}{25-d^{2}}=\bruch{10}{9}$ [/mm]

[mm] $\bruch{1}{25-d^{2}}=\bruch{1}{9}$ [/mm]

[mm] $d^2=16$ [/mm]

$d=4$

Die gesuchten Zahlen sind also 1, 5 und 9.

P.S. Warum stellst du solche Kindergartenfragen eigentlich im Uni-Bereich?

Bezug
        
Bezug
arithmetische folge: Antwort
Status: (Antwort) fertig Status 
Datum: 00:36 Fr 27.01.2006
Autor: Marc

Hallo Friteuse,

[willkommenmr]

Ich entschuldige mich, dass Paulus' hier recht Unfreundliches geschrieben hat, ich bin daran ja nicht ganz unschuldig. Jedenfalls ist dieser Umgang miteinander hier nicht erwünscht.

Eigentlich wollte ich aber darauf hinweisen, dass es zwei Lösungen/Folgen gibt; diese zeigen sich auch bei Paulus' Rechenweg ganz am Ende: [mm] $d^2=16$ $\gdw$ [/mm] $d=4$ oder $d=-4$.

Die beiden Lösungsfolgen lauten also:

[mm] $1,5,9,13,17\ldots$ [/mm]

und

[mm] $9,5,1,-3,-7\ldots$ [/mm]

Wenn etwas unklar ist, frage bitte nach.

Viele Grüße,
Marc

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]