matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Stochastikapproximative Annäherung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Stochastik" - approximative Annäherung
approximative Annäherung < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

approximative Annäherung: Aufgabe 22
Status: (Frage) überfällig Status 
Datum: 09:26 Mi 31.05.2006
Autor: Speyer

Aufgabe
Aufgabe 22. Wir wollen zeigen, daß eine rein zufällig aus [0,1] gezogene Zahl
                                                  
X sich approximativ nur (grob gesprochen) bis auf [mm] n^{-2 } [/mm] durch rationale Zahlen
der Gestalt k/n annähern läßt. Dazu betrachten wir für [mm] \varepsilon [/mm] > 0 die Ereignisse
                                                  
              [mm] A_{n} [/mm] := {|X − k/n| < [mm] n^{-2−\varepsilon} [/mm]  für ein k = 0, 1, . . . , n}.
                                        
Man bestimme die Wahrscheinlichkeit, daß nur endlich viele der [mm] A_{n} [/mm] eintreten.

ok, also irgendwie hängt der server, wenn ich hochgestellt ein minus eingebe, rechnet der das zu 8722 um, sry...

mit welcher Methode würdet ihr hier die WS bestimmen ?
und woher kommt hier überhaupt die [mm] n^{-2} [/mm] ?
wie kann ich das ausrechnen ?

        
Bezug
approximative Annäherung: vielleicht doch noch hilfe ?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:39 Fr 02.06.2006
Autor: Speyer

kommt schon leute, mir fällt absolut nix zu dieser Aufgabe ein, und ich muß die gleich abgeben... :-/ bitte helft mir auf die sprünge !

Bezug
        
Bezug
approximative Annäherung: Antwort
Status: (Antwort) fertig Status 
Datum: 10:32 Fr 02.06.2006
Autor: mathiash

Hallo und guten Morgen Speyer,

zuerst: Woher dieser urbane Name ?  Mir kommen spontan zwei Möglichkeiten in den Sinn...


Nun denn:

Es hat doch [mm] A_n [/mm] das Maß [mm] \frac{2}{n^{1+\epsilon}}, [/mm] und das geht gegen 0.

Nun sollte man doch versuchen,

[mm] Pr\left (X\in A_n\setminus \bigcup_{m>n}A_m\right [/mm] )

auszurechnen bzw abzuschätzen und dann vllt das für alle n aufsummieren oder so.

Gruss,

Mathias



Bezug
        
Bezug
approximative Annäherung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:20 So 04.06.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]