matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheorieanzahl der teiler
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Zahlentheorie" - anzahl der teiler
anzahl der teiler < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

anzahl der teiler: aufgabe + idee
Status: (Frage) beantwortet Status 
Datum: 17:53 Di 13.06.2006
Autor: sera

Aufgabe
wie viele teiler hat 3^999* [mm] 5^2* [/mm] 35

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt
gruß an alle.

also ist es richtig, wenn ich dies mit der tau funktion löse. dabei gil ja:

[mm] t(p^a)= [/mm] a+1

das wäre ja dann: 999+1 u. die [mm] 5^2 [/mm] würde ich splitten in 2 [mm] *5^1 [/mm] --> 1+1 u. 1+1 und die 35 als [mm] 35^1 [/mm] 1+1 aus dem ganzen folgt dann

1000*2*2*2 und wäre auch das ergebnis.

es kann auch sein, dass ich grotten falsch liege. hab es aber versucht. was meint ihr?

gruß sera

        
Bezug
anzahl der teiler: Antwort
Status: (Antwort) fertig Status 
Datum: 08:21 Mi 14.06.2006
Autor: felixf

Hallo sera!

> wie viele teiler hat 3^999* [mm]5^2*[/mm] 35
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt
>  gruß an alle.
>  
> also ist es richtig, wenn ich dies mit der tau funktion
> löse. dabei gil ja:

Die [mm] $\tau$-Funktion [/mm] gibt die Anzahl der Teiler einer Zahl, oder?

>  
> [mm]t(p^a)=[/mm] a+1

... wenn $p$ eine Primzahl ist.

>  
> das wäre ja dann: 999+1 u.

Also fuer [mm] $3^{999}$? [/mm] Genau.

> die [mm]5^2[/mm] würde ich splitten in 2  [mm]*5^1[/mm] --> 1+1 u. 1+1

Was machst du da?!?

> und die 35 als [mm]35^1[/mm] 1+1 aus dem ganzen
> folgt dann
>
> 1000*2*2*2 und wäre auch das ergebnis.

Abgesehen von der [mm] $\tau(5^2)$ [/mm] (und dem daraus entstandenen falschen Zeugs), ja...

LG Felix


Bezug
                
Bezug
anzahl der teiler: lsg
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:25 Mo 03.07.2006
Autor: sera

hi felix,

jetzt kommt aber der richtiger lsgsweg.

(A) tau von 3^999 ist 999+1= 1000

(B) da die primfaktor zerlegung von 35 = 5*7 ist, kann man die fünf  zu der [mm] 5^2 [/mm] dazu nehmen daraus folgt
--> [mm] 5^3 [/mm]

tau von [mm] 5^3 [/mm] ist 3+1

(C) tau von [mm] 7^1 [/mm] ist 1+1=2

(D) aus dem ganzen folgt 1000*4*2=8000

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]