matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenVektorenanzahl der Unterräume
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Vektoren" - anzahl der Unterräume
anzahl der Unterräume < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

anzahl der Unterräume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:18 Fr 10.11.2006
Autor: zero2006

Aufgabe
Wieviele Unterräume hat der [mm] \IF_{11} [/mm] - Vektorraum [mm] \IF_{11} \times \IF_{11} [/mm]

Ich habe da ein kleines problem also die Dimension ist ja 11, also muss der Unterraum doch 11 Elemente haben?!
Kann mir da jemand ein Rezept geben wie ich da diese Art von aufgaben dran gehe!!

Oder vielleicht sogar lösen?!
danke für eure antwort



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
anzahl der Unterräume: 14
Status: (Antwort) fertig Status 
Datum: 14:06 Fr 10.11.2006
Autor: otto.euler

Ich behaupte, dass der [mm] \IF_{11}-Vektorraum \IF_{11}x\IF_{11} [/mm] genau vierzehn Unterräume hat, diese sind (0,0); (x,0); (0,y); (1,y); (x,1); (x,y), d.h. der Vektorraum selber.
Da ein Untervektorraum nie leer ist, enthält er trivialerweise stets (0,0). Es gebe ein echtes weiteres Element. Dies habe zunächst die Form (x,0) mit [mm] x\not=0. [/mm] Da bei [mm] \IF_{11} [/mm] jedes Element [mm] \not=0 [/mm] erzeugendes Element ist, erhalte ich bei der Skalarmultiplikation von (x,0) ganz [mm] \IF_{11}x{0}. [/mm] Analog [mm] {0}x\IF_{11}. [/mm] Verbleibt (x,y) mit [mm] x\not=0 [/mm] und [mm] y\not=0. [/mm] Skalarmulitplikation mit x^(-1) liefert (1,z). Man sieht leicht, dass {(1,z); (2,2*z);...;(10,10*z);(0,0)} ein Vektorraum ist. Für [mm] z\not=0 [/mm] gibt es 10 Möglichkeiten. Gibt es ein weiteres echtes Element, so habe ich mit [mm] (1,z_{1}) [/mm] und [mm] (1,z_{2}), z_{1}\=0\=z_{2}\=z_{1}, [/mm] auch [mm] z_{2} [/mm] * [mm] (1,z_{1}) [/mm] - [mm] z_{1} [/mm] * [mm] (1,z_{2}) [/mm] = [mm] (z_{2}-z_{1} \= [/mm] 0,0) in diesem Vektorraum. Analog (0, z [mm] \= [/mm] 0), also [mm] \IF_{11}x\IF_{11}. [/mm] qed

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]