matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnunganschauung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Differenzialrechnung" - anschauung
anschauung < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

anschauung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:48 Di 31.03.2009
Autor: learningboy

Hallo,

wenn ich eine Zeichnung ein diff'baren Funktion hab und die ableitung einzeichnen soll.

was gilt dann?

aus extremstellen werden nullstellen in der ableitung?

aus wendestellen werden extremstellen?

2) wenn ich zeigen soll, dass eine funktion stetig ist, die abschnittsweise definiert ist, also z.B für x < 1 und > 1, dann setze ich beides mal 1 ein und wenn der gleiche wert rauskommt, dann ist die funktion stetig.

wenn ich das gleiche mit der ableitung mache weiß ich, dass die funktion auch diff'bar ist.

stimmt das so?

danke!

        
Bezug
anschauung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:02 Di 31.03.2009
Autor: fred97


> Hallo,
>  
> wenn ich eine Zeichnung ein diff'baren Funktion hab und die
> ableitung einzeichnen soll.
>  
> was gilt dann?
>  
> aus extremstellen werden nullstellen in der ableitung?

Stimmt


>  
> aus wendestellen werden extremstellen?

Stimmt auch


>  
> 2) wenn ich zeigen soll, dass eine funktion stetig ist, die
> abschnittsweise definiert ist, also z.B für x < 1 und > 1,
> dann setze ich beides mal 1 ein und wenn der gleiche wert
> rauskommt, dann ist die funktion stetig.



Ganz so einfach ist es nicht immer.

Beispiel:

[mm] f(x)=\begin{cases} 0, & \mbox{für } x \le 1 \\ \bruch{1}{1-x}, & \mbox{für } x>1 \end{cases} [/mm]

In den unteren Zweig kannst Du 1 nicht einsetzen.


Allgemein gilt für eine Funktion $g$ und einen Punkt [mm] x_0 [/mm] aus dem Definitionsbereich D von g, der auch noch Häufungspunkt von D ist:


g ist stetig in [mm] x_0 \gdw $\limes_{x\rightarrow x_0-}g(x) [/mm] = [mm] g(x_0) =\limes_{x\rightarrow x_0+}g(x)$ [/mm]



FRED

>  
> wenn ich das gleiche mit der ableitung mache weiß ich, dass
> die funktion auch diff'bar ist.
>  
> stimmt das so?
>  
> danke!


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]