matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenangeordneter Körper
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Funktionen" - angeordneter Körper
angeordneter Körper < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

angeordneter Körper: Beweis
Status: (Frage) beantwortet Status 
Datum: 19:55 Di 04.11.2008
Autor: summersession2005

Aufgabe
Für einen angeordneten Körper K und x, y ∈ K sei

max(x, y) := x falls x>=y, y falls  x < y          und

min (x,y) := x falls   x<=y, y falls  x >  y

Zeigen Sie, dass für y,x Element K gilt

max (x,y) =0,5 (x+y+|x-y|) und min (x,y) =0,5 (x+y+|x-y|)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


Hallo,

ich bekomme bei der oben stehenden Aufgabe keinen Ansatz hin!

Kann man die Aufgabe über die Eigenschaften eines angeordneten Körpers lösen?

Mein Gedanke ist:

Das Negative eines positiven Elements ist negativ und das Negative eines negativen Elements ist positiv

Ist das der Ansatz, aber wie beweis ich dies!

Bin absolut planlos und hoffe jemand kann mir bei dem Ansatz helfen

        
Bezug
angeordneter Körper: Antwort
Status: (Antwort) fertig Status 
Datum: 20:05 Di 04.11.2008
Autor: angela.h.b.


> Für einen angeordneten Körper K und x, y ∈ K sei
>  
> max(x, y) := x falls x>=y, y falls  x < y          und
>  
> min (x,y) := x falls   x<=y, y falls  x >  y

>  
> Zeigen Sie, dass für y,x Element K gilt
>  
> max (x,y) =0,5 (x+y+|x-y|) und min (x,y) =0,5 (x+y+|x-y|)

> ich bekomme bei der oben stehenden Aufgabe keinen Ansatz
> hin!
>  
> Kann man die Aufgabe über die Eigenschaften eines
> angeordneten Körpers lösen?
>  
> Mein Gedanke ist:
>  
> Das Negative eines positiven Elements ist negativ und das
> Negative eines negativen Elements ist positiv
>  
> Ist das der Ansatz, aber wie beweis ich dies!
>  
> Bin absolut planlos und hoffe jemand kann mir bei dem
> Ansatz helfen  

Hallo,

zeigen sollst Du ja:

max (x,y) =0,5 (x+y+|x-y|) .

Was das Maximum sein soll, ist oben definiert, die Def. des Betrages brauchst Du hier auch.

Lösen kannst Du das mit einer Fallunterscheidung.

1: Fall: [mm] x\ge [/mm] y

Berechne max (x,y)  und 0,5 (x+y+|x-y|) und guck', ob dasselbe herauskommt

2. Fall x<y  : analog

Und das Minimum wird ähnlich gehen.

Gruß v. Angela



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]