matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenanfangswertproblem
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Funktionen" - anfangswertproblem
anfangswertproblem < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

anfangswertproblem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 02:07 Di 09.01.2007
Autor: toggit

Aufgabe
a) Sei y eine zweimal differenzierbare Funktion mit [mm] y(0)=\pi, [/mm] die folgende Differentialgleichung erfüllt:
y'=x+cos(y)
Bestimmen sie das Taylorpolynom zweites grades von y im Punkt [mm] x_{0}=0 [/mm]
b) Sei [mm] a\in \IR \setminus{0}. [/mm] Bestimmen sie eine Lösung des folgendes Anfangswertproblems, d.h. finden sie eine Funktion [mm] y:\IR \to \IR, [/mm] die folgende bedinungen erfüllt:
y(0)=0,   [mm] y''+a^{2}y=0 [/mm]
Sei [mm] L\in \IR{+} [/mm] gegeben. wie muss a gewält werden, damit y(L)=0 für die Lösung y des Anfangswertproblems gilt?

hallo
habe verständnissproblem mit punkt b)
im a) habe ich bekommen:
[mm] T=\pi +x+\bruch{1}{2}x^{2} [/mm]
is das ok?

aber wie soll ich punkt b überhaupt verstehen?
was gibt hier zu bestimmen und um was für ein Anfangswertproblem hier geht?
bin für jede hilfe dankbar
mfg toggit

        
Bezug
anfangswertproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 07:10 Di 09.01.2007
Autor: MatthiasKr

hi toggit,
> a) Sei y eine zweimal differenzierbare Funktion mit
> [mm]y(0)=\pi,[/mm] die folgende Differentialgleichung erfüllt:
>  y'=x+cos(y)
>  Bestimmen sie das Taylorpolynom zweites grades von y im
> Punkt [mm]x_{0}=0[/mm]
>  b) Sei [mm]a\in \IR \setminus{0}.[/mm] Bestimmen sie eine Lösung
> des folgendes Anfangswertproblems, d.h. finden sie eine
> Funktion [mm]y:\IR \to \IR,[/mm] die folgende bedinungen erfüllt:
>  y(0)=0,   [mm]y''+a^{2}y=0[/mm]
>  Sei [mm]L\in \IR{+}[/mm] gegeben. wie muss a gewält werden, damit
> y(L)=0 für die Lösung y des Anfangswertproblems gilt?
>  hallo
>  habe verständnissproblem mit punkt b)
>  im a) habe ich bekommen:
>  [mm]T=\pi +x+\bruch{1}{2}x^{2}[/mm]
>  is das ok?

sieht ok aus.

>  
> aber wie soll ich punkt b überhaupt verstehen?
>  was gibt hier zu bestimmen und um was für ein
> Anfangswertproblem hier geht?
>  bin für jede hilfe dankbar
>  mfg toggit

gesucht wird eine funktion $y$, die die genannte differentialgleichung erfüllt und außerdem den genannten anfangswert in $x=0$ haben soll. diese aufgabenstellung nennt man anfangswertproblem.

die diff.gl. [mm]y''+a^{2}y=0[/mm] ist eine der einfachsten. suche die lösung einmal bei den elementarsten dir bekannten funktionen.

wenn du die lösung hast, untersuche, welche bedingung a erfüllen muss, damit $y(L)=0$ gilt. ich denke, das wirst du verstehen, wenn du erstmal die gleichung gelöst hast!

gruß
matthias




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]