matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche Differentialgleichungenanfangswertaufgabe ansatz?
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gewöhnliche Differentialgleichungen" - anfangswertaufgabe ansatz?
anfangswertaufgabe ansatz? < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

anfangswertaufgabe ansatz?: nullstelle komplex?
Status: (Frage) beantwortet Status 
Datum: 15:36 Fr 29.06.2012
Autor: ichhabefertig

Aufgabe
Bestimme die Lsg. der Anfangswertaufgabe;

y´´  -  4y´ + 3y =5e^(2x)  ; y(0)=-5   ,  y(0)=-6

Hallo matheraum,
zu der obigen Aufg. habe ich folgende Frage;
ich habe die lin. homog. dgl 2.ter Ordn. ueber den Ansatz :

y(x)= e^(lamda*x) gelöst.

der homogene Teil liefert ueber das char. polyn. für mich unterschiedliche nullst:

wenn ich die nst. errate bekomme ich lamda1=3 , lamda2=1 .

wenn ich die nst. ueber die pq-Formel löse bekomme ich
lamda1,2 = 2+-Wurzel(1)
und somit einen anderen Ansatz für den inh. Teil.

meine ergebnisse der allg. Lsg. sind

(nst. raten) : y(x)= c1+e^3x  +  c2*e^2x   -5e^2x

(pq-formel) : y(x)= e^2x  * (c1*cos(x)  +  c2* sind(x)  -  5)

somit ergeben sich auch wieder unterschl. lsg. der koeffizienten.

(Nat. ergeben sich über die pq-formel die selben werte wie beim raten wenn ich davon ausgehen das die wurzel aus 1 = 1 ist. Es ist aber kein Zahlenbereich definiert?!?!)

Wäre echt super wenn mir das jmd. näher erläutern könnte, wann ich den Ansatz der komplexen Zahlen nehmen muss.

schoenen gruß ichhabefertig ;)




Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
anfangswertaufgabe ansatz?: Antwort
Status: (Antwort) fertig Status 
Datum: 15:50 Fr 29.06.2012
Autor: MathePower

Hallo ichhabefertig,


[willkommenmr]

> Bestimme die Lsg. der Anfangswertaufgabe;
>  
> y´´  -  4y´ + 3y =5e^(2x)  ; y(0)=-5   ,  y(0)=-6
>  Hallo matheraum,
>  zu der obigen Aufg. habe ich folgende Frage;
>  ich habe die lin. homog. dgl 2.ter Ordn. ueber den Ansatz
> :
>  
> y(x)= e^(lamda*x) gelöst.
>  
> der homogene Teil liefert ueber das char. polyn. für mich
> unterschiedliche nullst:
>  
> wenn ich die nst. errate bekomme ich lamda1=3 , lamda2=1 .
>  
> wenn ich die nst. ueber die pq-Formel löse bekomme ich
>   lamda1,2 = 2+-Wurzel(1)
>  und somit einen anderen Ansatz für den inh. Teil.
>  
> meine ergebnisse der allg. Lsg. sind
>  
> (nst. raten) : y(x)= c1+e^3x  +  c2*e^2x   -5e^2x
>


Die homogene Lösung der DGL lautet doch: [mm]y_{h}\left(x\right)=c_{1}*e^{3x}+c_{2}*e^{x}[/mm]

Für die partikuläre Lösung machst Du den Ansatz: [mm]y_{p}\left(x\right)=A*e^{2x}[/mm]

  

> (pq-formel) : y(x)= e^2x  * (c1*cos(x)  +  c2* sind(x)  -  
> 5)
>  


Das verstehe ich  nicht.


> somit ergeben sich auch wieder unterschl. lsg. der
> koeffizienten.
>  
> (Nat. ergeben sich über die pq-formel die selben werte wie
> beim raten wenn ich davon ausgehen das die wurzel aus 1 = 1
> ist. Es ist aber kein Zahlenbereich definiert?!?!)
>  
> Wäre echt super wenn mir das jmd. näher erläutern
> könnte, wann ich den Ansatz der komplexen Zahlen nehmen
> muss.
>


Ist die Störfunktion (rechte Seite der DGL) eine Linearkombination von
Sinus und Cosinus, so empfiehlt sich für die partikuläre Lösung
der Ansatz über die komplexen Zahlen.


> schoenen gruß ichhabefertig ;)
>  
>
>
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]