matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe Analysisanalytische funktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Komplexe Analysis" - analytische funktion
analytische funktion < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

analytische funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:54 Mi 04.06.2008
Autor: verkackt

Aufgabe
Sei O [mm] \subset \IR^2 [/mm] offen.Für eine reelll analytische Funktion u:O [mm] \to \IR [/mm] definieren wir
[mm] v(z,\overline{z}) :=u(\bruch{z+\overline{z}}{2}, \bruch{z-\overline{z}}{2i}) [/mm]
1.Zeigen Sie formal, dass gilt: [mm] \Delta u(x,y)=4\bruch{\partial}{\partial z}\bruch{\partial}{\partial \overline{z}}v(z,\overline{z}) [/mm]
2.Wir betrachten nun z und [mm] \overline{z} [/mm] als unabhängige (reelle) Variablen.Zeigen Sie formel, dass sich die Lösung von [mm] \bruch{\partial}{\partial z}\bruch{\partial}{\partial \overline{z}}v(z,\overline{z})=0 [/mm] schreiben lässt als  [mm] v(z,\overline{z})=f(z)+g(\overline{z}) [/mm]
3.Wie sieht dann die formale Lösung aus von [mm] \bruch{\partial}{\partial z}\bruch{\partial}{\partial \overline{z}}\bruch{\partial}{\partial z}\bruch{\partial}{\partial \overline{z}}v(z,\overline{z})=0 [/mm] ?

Hallo,
ich komme leider mit den zweiten und dritten Teil der Aufgabe nicht klar.Den Teil 1 hab ich schon gemacht, aber bei 2 und 3  versteh ich die Aufgabe gar nicht.
Bei der 2 hab ich schon [mm] v(z,\overline{z}) [/mm] mit [mm] u(\bruch{z+\overline{z}}{2},\bruch{z-\overline{z}}{2i}) [/mm] ersetzt, was wiederum gleich u(Re z, Im z) ist .weiter komm ich leider  nicht. Und bei der 3 glaub ich , fehlt mir denselben Ansatz wie bei der 2.Also  solange ich den 2.Teil nicht verstehe kann ich nichts mit 3 anfangen.
Es wäre super nett, wenn einer mir einen Tipp geben könnte.
Lg.V.

        
Bezug
analytische funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:36 Mi 04.06.2008
Autor: verkackt

Ich sehe solche Aufgaben sind gar nicht beliebt.Aber ich brauch dringend eine Hilfe.


Bezug
        
Bezug
analytische funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 09:24 Do 05.06.2008
Autor: felixf

Hallo

> Sei O [mm]\subset \IR^2[/mm] offen.Für eine reelll analytische
> Funktion u:O [mm]\to \IR[/mm] definieren wir
> [mm]v(z,\overline{z}) :=u(\bruch{z+\overline{z}}{2}, \bruch{z-\overline{z}}{2i})[/mm]
>  
> 1.Zeigen Sie formal, dass gilt: [mm]\Delta u(x,y)=4\bruch{\partial}{\partial z}\bruch{\partial}{\partial \overline{z}}v(z,\overline{z})[/mm]
>  
> 2.Wir betrachten nun z und [mm]\overline{z}[/mm] als unabhängige
> (reelle) Variablen.Zeigen Sie formel, dass sich die Lösung
> von [mm]\bruch{\partial}{\partial z}\bruch{\partial}{\partial \overline{z}}v(z,\overline{z})=0[/mm]
> schreiben lässt als  
> [mm]v(z,\overline{z})=f(z)+g(\overline{z})[/mm]
>  3.Wie sieht dann die formale Lösung aus von
> [mm]\bruch{\partial}{\partial z}\bruch{\partial}{\partial \overline{z}}\bruch{\partial}{\partial z}\bruch{\partial}{\partial \overline{z}}v(z,\overline{z})=0[/mm]
> ?
>
>  Hallo,
> ich komme leider mit den zweiten und dritten Teil der
> Aufgabe nicht klar.Den Teil 1 hab ich schon gemacht, aber
> bei 2 und 3  versteh ich die Aufgabe gar nicht.
>  Bei der 2 hab ich schon [mm]v(z,\overline{z})[/mm] mit
> [mm]u(\bruch{z+\overline{z}}{2},\bruch{z-\overline{z}}{2i})[/mm]
> ersetzt, was wiederum gleich u(Re z, Im z) ist .weiter komm
> ich leider  nicht.

Versuch's doch so: setze $f(z) = v(z, [mm] \overline{z}_0)$ [/mm] fuer ein festes [mm] $\overline{z}_0$. [/mm] Damit du jetzt [mm] $g(\overline{z}) [/mm] = v(z, [mm] \overline{z}) [/mm] - f(z)$ setzen kannst, muss $v(z, [mm] \overline{z}) [/mm] - f(z) = v(z, [mm] \overline{z}) [/mm] - v(z, [mm] \overline{z}_0)$ [/mm] unabhaengig von $z$ sein, sprich [mm] $\frac{d}{d z} [/mm] (v(z, [mm] \overline{z}) [/mm] - v(z, [mm] \overline{z}_0))$ [/mm] muss gleich 0 sein.

Hier kannst du jetzt mal $v(z, [mm] \overline{z}) [/mm] = [mm] u(\tfrac{z + \overline{z}}{2}, \tfrac{z - \overline{z}}{2})$ [/mm] einsetzen und gucken ob du das beweisen kannst.

> Und bei der 3 glaub ich , fehlt mir
> denselben Ansatz wie bei der 2.Also  solange ich den 2.Teil
> nicht verstehe kann ich nichts mit 3 anfangen.

Nein, den brauchst du hier nicht, 3 ist viel einfacher.

Wenn [mm] $\bruch{\partial}{\partial z}\bruch{\partial}{\partial \overline{z}}\bruch{\partial}{\partial z}\bruch{\partial}{\partial \overline{z}}v(z,\overline{z})=0$ [/mm] gilt, muss nach 2. ja [mm] $\bruch{\partial}{\partial z}\bruch{\partial}{\partial \overline{z}}v(z,\overline{z})$ [/mm] von der Form $f(z) + [mm] g(\overline{z})$ [/mm] sein.

Und dann weisst du nach 1., dass [mm]\Delta u(x,y)=4\bruch{\partial}{\partial z}\bruch{\partial}{\partial \overline{z}}v(z,\overline{z})[/mm] gilt; also bekommst du die Gleichung $f(z) + [mm] g(\overline{z}) [/mm] = [mm] \frac{1}{4} \Delta [/mm] u(x, y)$.

Kannst damit was anfangen?

LG Felix


Bezug
                
Bezug
analytische funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:47 Do 05.06.2008
Autor: verkackt

Ja, danke dir.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]