matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationstheorieallgemeines Integral arctan
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integrationstheorie" - allgemeines Integral arctan
allgemeines Integral arctan < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

allgemeines Integral arctan: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:51 Fr 27.02.2009
Autor: Surfer

Hallo, von arctanh gibt es doch diese allgemein geltende Integrationsregel:

[mm] \integral_{}^{}{\bruch{1}{c^{2}-x^{2}} dx} [/mm] = [mm] \bruch{1}{c} [/mm] arctanh [mm] (\bruch{x}{c}) [/mm]

gibt es denn diese auch für den arctan ?

lg Surfer

        
Bezug
allgemeines Integral arctan: arctan(x)
Status: (Antwort) fertig Status 
Datum: 09:58 Fr 27.02.2009
Autor: Loddar

Hallo Surfer!


Es gilt:
[mm] $$\integral{\bruch{1}{a^2+x^2} \ dx} [/mm] \ = \ [mm] \bruch{1}{a}*\arctan\left(\bruch{x}{a}\right)+c$$ [/mm]

Oder meinst Du hier die Stammfunktion zu [mm] $\arctan(x)$ [/mm] ? Diese kannst Du mittels partieller Integration über [mm] $\red{1}*\arctan(x)$ [/mm] berechnen.


Gruß
Loddar


Bezug
                
Bezug
allgemeines Integral arctan: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:08 Fr 27.02.2009
Autor: Surfer

Ok so hab ich es auch angewendetauf folgendes Beispiel:

[mm] \integral_{}^{}{\bruch{1}{2+3z^{2}} dz} [/mm] =  
[mm] \integral_{}^{}{1 dx} [/mm]
und habe dann erhalten:

z = [mm] \wurzel{\bruch{2}{3}} tan(\wurzel{2}x+c) [/mm] laut der Musterlösung muss aber statt der [mm] \wurzel{2} [/mm] eine [mm] \wurzel{6} [/mm] rauskommen? woher?

lg Surfer

Bezug
                        
Bezug
allgemeines Integral arctan: zusammenfassen
Status: (Antwort) fertig Status 
Datum: 10:28 Fr 27.02.2009
Autor: Loddar

Hallo Surfer!


Normalerweise solltest Du dann hier in Einzelschritten vorrechnen, um den Fehler finden zu können ...

Durch Integration der linken Seite erhält man gemäß meiner obigen Formel:
[mm] $$\bruch{1}{3}*\wurzel{\bruch{3}{2}}*\arctan\left(\bruch{z}{\wurzel{\bruch{2}{3}}}\right)$$ [/mm]
Die Faktoren vor dem [mm] $\arctan(...)$ [/mm] kann man zusammenfassen zu:
[mm] $$\bruch{1}{3}*\wurzel{\bruch{3}{2}} [/mm] \ = \ [mm] \wurzel{\bruch{1}{9}}*\wurzel{\bruch{3}{2}} [/mm] \ = \ [mm] \wurzel{\bruch{1}{9}*\bruch{3}{2}} [/mm] \ = \ [mm] \wurzel{\bruch{1}{6}} [/mm] \ = \ [mm] \bruch{1}{\wurzel{6}}$$ [/mm]

Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]