matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-Funktionenallgemeine Funktionsableitung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Exp- und Log-Funktionen" - allgemeine Funktionsableitung
allgemeine Funktionsableitung < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

allgemeine Funktionsableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:18 Mi 08.11.2006
Autor: Kroete

Aufgabe
Wir sollen aus den 4 folgenden Funktionen einen allgemeine Ableitungsformel entwickeln, die dann für alle erdenklichen Ableitungen von f gelten soll.
[mm] f(x)=(x^2-2*x)*e^{-x} [/mm]
f´(x)= [mm] (-x^2+4*x-2)*e^{-x} [/mm]
f''(x)= [mm] (x^2-6*x+6)*e^{-x} [/mm]
[mm] f'''(x)=(-x^2+8*x-12)*e^{-x} [/mm]

Der Anfang unserer Gleichung ist schon gegeben:
f hoch n(x)= [(-1)hoch n*x²......]*e hoch -x

Wär nett wenn jemand helfen würde...
[mm] e^{-x} [/mm] sollte eig. e hoch -x heißen

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.  

[mm] f(x)=(x²-2*x)*e^{-x} [/mm]
f´(x)=    [mm] (-x²+4*x-2)*e^{-x} [/mm]
f''(x)=  [mm] (x²-6*x+6)*e^{-x} [/mm]
[mm] f'''(x)=(-x²+8*x-12)*e^{-x} [/mm]

Der Anfang unserer Gleichung ist schon gegeben:
f hoch n(x)= [(-1)hoch n*x²......]*e hoch -x

Wär nett wenn jemand helfen würde...
[mm] e^{-x} [/mm] sollte eig. e hoch -x heißen

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
allgemeine Funktionsableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:31 Do 09.11.2006
Autor: M.Rex

Hallo Andrea

> Wir sollen aus den 4 folgenden Funktionen einen allgemeine
> Ableitungsformel entwickeln, die dann für alle erdenklichen
> Ableitungen von f gelten soll.
>  [mm]f(x)=(x^2-2*x)*e^{-x}[/mm]
>  f´(x)= [mm](-x^2+4*x-2)*e^{-x}[/mm]
>  f''(x)= [mm](x^2-6*x+6)*e^{-x}[/mm]
>  [mm]f'''(x)=(-x^2+8*x-12)*e^{-x}[/mm]

Dann schau doch mal, was hier passiert.
1)Die Vorzeichen im rationalen Term ändern sich jedes Mal.
2) es gilt: Der Koeffizient vor dem x erhöht sich um 2.
3) der von x unabhängige Teil setzt sich aus dem Koeffizienten vor dem x und dem freien Teil aus der vorigen Ableitung zusammen, er ist die Summe daraus)

Wenn wir mit folgender Funktion anfangen [mm] f(x)=(x²+nx)e^{-x} [/mm]
Dann gilt für die erste Ableitung
[mm] f'(x)=(-x²-(n+2)x+(n+0))*e^{-x} [/mm]
und [mm] f''(x)=(x²+(n+4)-((n+2)+n))e^{-x} [/mm]

das heisst, die geraden Ableitungen haben positive Vorzeichen, ausser bei dem freien Teil, die ungeraden negative.

Also
[mm] f^{i}(x)=[((-1)^{i}x²)+((-1)^{i}(n+2i)x)-((-1)^{i}(n+2(i-1)))]e^{-x} [/mm]

[mm] f^{i}ist [/mm] die i-te Ableitung.

Marius





Bezug
                
Bezug
allgemeine Funktionsableitung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:25 Do 09.11.2006
Autor: Kroete

Danke Marius!
Das mit den Vorzeichen hätte ich auch noch hinbekommen aber dann wusste ich einfach nich mehr weiter! Vielen Dank!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]