matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche Differentialgleichungenallg. d. zuge. homogenen DGL
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gewöhnliche Differentialgleichungen" - allg. d. zuge. homogenen DGL
allg. d. zuge. homogenen DGL < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

allg. d. zuge. homogenen DGL: Tipp
Status: (Frage) beantwortet Status 
Datum: 16:15 Di 31.08.2010
Autor: benotto

Aufgabe
Bestimmen Sie zuernst die allgemeine Lsg. der zugehörigen homogenen DGL und dann mittels "Variation der Konstanten" die allgemeine Lsg.
A) y´-2y=sin(x)
B) [mm] x^{2}+4xy=\bruch{sin(x)}{x} [/mm]

Hi Leute,

ich häng schon länger an der Aufgabe B bei A bin ich ja noch nach langem probieren auf die allgemeine Lsg. der homogenen Dgl. gekommen [mm] y=Co*e^{2x} [/mm] und dann auf das Ergebnis [mm] ya(x)=Co*e^{2x}+(\bruch{-1}{5}*(2sin(x)+cos(x)), [/mm] wenn es stimmt?
Aber mit der Aufgabe B bin ich total überfordert ich steh gerade vor einer unüberwindbaren Wand.

verzweifelte Grüße
benotto

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
allg. d. zuge. homogenen DGL: Antwort
Status: (Antwort) fertig Status 
Datum: 16:28 Di 31.08.2010
Autor: notinX

Hi,

> ich häng schon länger an der Aufgabe B bei A bin ich ja
> noch nach langem probieren auf die allgemeine Lsg. der
> homogenen Dgl. gekommen [mm]y=Co*e^{2x}[/mm] und dann auf das
> Ergebnis [mm]ya(x)=Co*e^{2x}+(\bruch{-1}{5}*(2sin(x)+cos(x)),[/mm]
> wenn es stimmt?

Ja, stimmt. Du kannst die Lösung auch leicht überprüfen indem Du sie in die DGL einsetzt. Kommt eine wahre Aussage raus ist die Lösung richtig.

>  Aber mit der Aufgabe B bin ich total überfordert ich steh
> gerade vor einer unüberwindbaren Wand.

Kann es sein, dass Du was vergessen hast? Bei der zweiten Gleichung kommt gar keine Ableitung vor...

Gruß,

notinX

Bezug
                
Bezug
allg. d. zuge. homogenen DGL: Korrektur
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:46 Di 31.08.2010
Autor: benotto

Hubs,

ja du hast recht, da hab ich wohl was vergessen!
[mm] x^{2}\bruch{dy}{dx} +4xy=\bruch{sin(x)}{x} [/mm]

Danke dir!



Bezug
                        
Bezug
allg. d. zuge. homogenen DGL: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:54 Di 31.08.2010
Autor: notinX


> Hubs,
>
> ja du hast recht, da hab ich wohl was vergessen!
>  [mm]x^{2}\bruch{dy}{dx} +4xy=\bruch{sin(x)}{x}[/mm]
>  
> Danke dir!
>  
>  

Wo liegt denn das Problem? In der Aufgabenstellung steht doch genau was Du tun sollst.
Löse erstmal die homogene Gleichung und dann bestimme die allgemeine durch VdK.
Wenns Dir besser gefällt kannst Du die DGL auch erstmal mit x multiplizieren:
[mm] $x^3y'+4x^2y=\sin [/mm] x$
die zugehörige homogene Gleichung ist dann:
$x^3y'+4x^2y=0$ bzw. [mm] $x^3\frac{\mathrm{d}y}{\mathrm{d}x}+4x^2y=0$ [/mm]

Bezug
                                
Bezug
allg. d. zuge. homogenen DGL: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:08 Di 31.08.2010
Autor: benotto

Manchmal gibt es diese Tage, da hat man(n) Tomaten auf den Augen

Danke

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]