matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare Algebraaffiner Raum
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Lineare Algebra" - affiner Raum
affiner Raum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

affiner Raum: Frage
Status: (Frage) beantwortet Status 
Datum: 14:02 So 01.05.2005
Autor: sternchen19.8

Könnt ihr mir vielleicht weiterhelfen, bei der Frage, wie man beweisen kann, dass eine Ebene, d.h. ein affiner Unterreum der Dimension 2 , stets von 3 paarweise verschiedenen Punkten erzeugt wird, die nicht alle auf einer Gerade liegen?
Ich meine mir ist das ziemlcih klar, ich kann mir das vorstellen, ist ja auch nicht schwer, aber ich weiß nicht, wie ich das beweisen soll. Hättet ihr vielleicht eine Idee?

        
Bezug
affiner Raum: Antwort
Status: (Antwort) fertig Status 
Datum: 16:04 So 01.05.2005
Autor: DaMenge

Hi,

Geht das nicht sogar so einfach, dass du dir einen der drei Punkte wählst* und dann die Vektoren zu den anderen beiden Punkten als Basis der Ebene nimmst?
Du musst nur zeigen, dass diese beiden Vektoren linear unabhängig sind - aber zwei Vektoren sind genau dann linear abhängig, wenn $ [mm] v_1 [/mm] = a* [mm] v_2 [/mm] $ also wenn sie die selbe (oder entgegengesetzte) Richtung haben, also auf einer Gerade liegen und genau das soll ja hier nicht der Fall sein.

zu *) man wählt ja eigentlich den Vektor vom Nullpunkt zu dem gewählten Punkt als affine Verschiebung der Ebene

Das kann man natürlich nur so machen, wenn ihr das alles so schon hattet, wenn nicht : sag doch bitte mal, was ihr verwenden dürft.
viele Grüße
DaMenge

Bezug
                
Bezug
affiner Raum: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 21:42 So 01.05.2005
Autor: sternchen19.8

Sorry, das ich erst so spät reagiere, aber ich musste noch den anderen Übungszettel fertig machen.
Das Prinzip, wie du es zeigen willst, ist mir sehr logisch. Aber welche drei Vektoern soll ich am Anfang wählen.
Ist der erste :
g:  [mm] \vektor{0 \\ 0} [/mm] + t* [mm] \vektor{x1 \\ y1} [/mm]
und der zweite z.B.
f:  [mm] \vektor{0 \\ 0} [/mm] + s* [mm] \vektor{x2 \\ y2} [/mm]  
Und was wäre dann der dritte?
Wär super, wenn du mir nochmal helfen könntets!

Bezug
                        
Bezug
affiner Raum: Antwort
Status: (Antwort) fertig Status 
Datum: 21:50 So 01.05.2005
Autor: DaMenge

Hi,

ich dachte wir sind im dreidimensionalem Raum, denn sonst macht eine affin-verschobene Ebene keinen Sinn.

also du hast drei Punkte gegeben:
P1=(a,b,c) ; P2=(r,s,t) und P3=(x,y,z)
dann wähle dir einen als "Stützpunkt" aus, sagen wir: P1, dann ist der Vektor , der die Verschiebung der Ebene beschreibt, ist gerade: $ [mm] \vektor{a\\b\\c} [/mm] $

jetzt nimmst du noch die Vekoren [mm] v_1 [/mm] =(P2-P1) und [mm] v_2 [/mm] =(P3-P1) als Basis der Ebene, also $ [mm] v_1=\vektor{r-a\\s-b\\t-c} [/mm] $ und $ [mm] v_2=\vektor{x-a\\y-b\\z-c} [/mm] $

Warum diese beiden Vektoren linear unabhängig sind, habe ich ja schon erwähnt...
Die Frage ist nur, ob du die Begründung schon genau SO verwenden kannst.

viele Grüße
DaMenge

Bezug
                                
Bezug
affiner Raum: Mitteilung
Status: (Frage) beantwortet Status 
Datum: 22:15 So 01.05.2005
Autor: sternchen19.8

Es steht nur da, das es sich um einen affinen Unterraum der Dimension 2 handelt, deswegen bin ich von einer Ebene ausgegangen. Außerdem steht da dort auch noch, das es sich um drei paarweise Punkte handelt. Ist doch der [mm] R^2 [/mm] oder?

Bezug
                                        
Bezug
affiner Raum: Antwort
Status: (Antwort) fertig Status 
Datum: 08:39 Mo 02.05.2005
Autor: DaMenge

Hi,

die Punkte sollen "paarweise verschieden" sein, das ist ein mathem. Ausdruck und bedeutet : wenn du zwei Punkte nimmst, dann sind diese beiden verschieden - egal welche beiden Punkte du nimmst.
Es heißt NICHT, dass der Punkt nur zwei Komponenten hat.

Ein Unterraum der Dimension 2 ist eine Ebene, richtig!
Aber affin bedeutet doch : verschoben.
Wenn du nur zwei Dimensionen hast, in welche Richtung willst du denn verschieben?

Übrigens es steht tatsächlich nicht da, in welchem Raum du dich bewegst, wenn ihr nichts anderes als Standard defonoert habt, musst du evtl. sogar vom $ [mm] \IR^n [/mm] $ ausgehen, d.h. jeder Vektor hat n Komponenten.

Aber die Argumentation ist vollkommen die selbe nur das Aufschreiben der Vektoren nicht.
viele Grüße
DaMenge

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]