matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Sonstigesaffine homotopie
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis-Sonstiges" - affine homotopie
affine homotopie < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

affine homotopie: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:13 Mi 27.06.2012
Autor: Mathe-Lily

Hallo!
Es geht nicht um eine bestimmte Aufgabe, sondern um eine Definition (affine Homotopie) in unserem Analysis2-Skript, die ich nicht verstehe:
Sei A [mm] \subset \IR^{n} [/mm] offen und F [mm] \in C^{1} (A,\IR^{n}) [/mm] mit [mm] D_{i}F_{j}=D_{j}F_{i} [/mm] für i,j=1,...,n. Für Kurven [mm] \gamma_{0}, \gamma_{1} \in PC^{1}([a,b],A) [/mm] betrachte die affine Homotopie [mm] \gamma:[a,b] [/mm] x [0,1] [mm] \to \IR^{n}, \gamma(s,t)=(1-t)\gamma_{0}(s)+t\gamma_{1}(s). [/mm]

Ich habe verstanden, dass Homotopie eine stetige Deformation zwischen 2 Abbildungen ist. Aber was ist das mit dem affin? Kann mir das jemand anschaulich erklären?
Das wäre toll!
Grüßle, Lily

        
Bezug
affine homotopie: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:57 Do 26.07.2012
Autor: Mathe-Lily

hallo!
ich bin immernoch an einer antwort interessiert! :-)

Bezug
                
Bezug
affine homotopie: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:30 Fr 27.07.2012
Autor: hippias

Es koennte sich auf die Linearkombination beziehen: Ist naemlich die Summe der Koeffizienten bei einer Linearkombination $=1$,so nennt man sich auch affin.

Bezug
        
Bezug
affine homotopie: Antwort
Status: (Antwort) fertig Status 
Datum: 17:42 Do 26.07.2012
Autor: Leopold_Gast

Ich würde sagen, das ist einfach die vorgegebene Homotopie. Denkt man sich [mm]s[/mm] fest und [mm]t[/mm] variabel, so beschreibt [mm]t \mapsto (1-t) \cdot \gamma_0(s) + t \cdot \gamma_1(s)[/mm] die Strecke zwischen den Punkten [mm]\gamma_0(s)[/mm] der einen und [mm]\gamma_1(s)[/mm] der anderen Kurve. Und "Strecke" heißt "affin".

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]