matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra Sonstigesaffine Unabhängigkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra Sonstiges" - affine Unabhängigkeit
affine Unabhängigkeit < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

affine Unabhängigkeit: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 15:56 Mo 06.07.2009
Autor: chrissi2709

Aufgabe
[mm] p_1 [/mm] = (1,0,1); [mm] p_2 [/mm] = (0,3,1); [mm] p_3 [/mm] = (2,1,0) [mm] \in \IR^3 [/mm]
a)Zeige, dass die Punkte affin unabhängig sind
b) [mm] a_1 [/mm] = (2,5.-1); [mm] a_2 [/mm] = (-2,5,2); [mm] a_3 [/mm] = (-5,2,5) [mm] \in \IR^3 [/mm]
Stelle die punkte [mm] a_1 [/mm] bis [mm] a_3 [/mm] als Affinkombination von [mm] p_1, p_2, p_3 [/mm] dar.  

Hallo an alle!

zu a)

ich hab den punkt [mm] p_1 [/mm] als basis und [mm] p_2 [/mm] & [mm] p_3 [/mm] als richtungsvektoren genommen (also [mm] p_2 [/mm] bzw [mm] p_3 [/mm] - [mm] p_1) [/mm]
=> [mm] \pmat{1 & -1 & 1 \\ 0 & 3 & 1 \\1 & 0 & -1} [/mm] = 0
hab dann rausbekommen dass [mm] x_1 [/mm] bis [mm] x_3 [/mm] gleich 0 sein müssen damit das gleichungssystem aufgeht.
=> affin unabhängig (hab ich so gelesen, dass ich das so machen kann)
stimmt das?

zu b)
wie setze ich denn einen anderen punkt in affinkombination zu den drei anderen dar?

danke schonmal für die antworten

lg

chrissi

        
Bezug
affine Unabhängigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 19:12 Mo 06.07.2009
Autor: angela.h.b.


> [mm]p_1[/mm] = (1,0,1); [mm]p_2[/mm] = (0,3,1); [mm]p_3[/mm] = (2,1,0) [mm]\in \IR^3[/mm]
>  
> a)Zeige, dass die Punkte affin unabhängig sind

Hallo,

Du mußt dafür zeigen, daß die beiden Vektoren  [mm] p_2-p_1 [/mm] und [mm] p_3-p_1 [/mm] linear unabhängig im zugrunde liegenden VR sind, also im [mm] \IR^3. [/mm]

>  b) [mm]a_1[/mm] = (2,5.-1); [mm]a_2[/mm] = (-2,5,2); [mm]a_3[/mm] = (-5,2,5) [mm]\in \IR^3[/mm]

> Stelle die punkte [mm]a_1[/mm] bis [mm]a_3[/mm] als Affinkombination von [mm]p_1, p_2, p_3[/mm]
> dar.

Du mußt Koeffizienten [mm] \lambda_1 [/mm] und [mm] \lambda_2 [/mm] finden mit

[mm] a_1=p_1+\lambda_1(p_2-p_1)+\lambda_2 (p_3-p_1). [/mm]

Die anderen entsprechend.

Gruß v. Angela


Bezug
                
Bezug
affine Unabhängigkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:45 Mo 06.07.2009
Autor: chrissi2709

danke für die antwort; hat mir weitergeholfen
konnte die aufgabe somit lösen
also nochmals vielen dank

lg chrissi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]