matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare Algebraaffine Gruppe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Lineare Algebra" - affine Gruppe
affine Gruppe < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

affine Gruppe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:56 So 11.07.2004
Autor: margarita

Hallo...
Ich habe hier eine Definition fuer eine affine Abbildung, die folgendermassen lautet: Eine bijektive Abbildung g: [mm] \IR^n \to \IR^n [/mm] heisst affin, wenn fuer alle x,y [mm] \in \IR^n [/mm]
und alle a, b [mm] \in \IR [/mm] mit a+b=1 gilt: g(ax+by)=ag(x)+bg(x).
Ich moechte beweisen, dass [mm]A(\IR^n):= \left\{ g: \IR^n \to \IR^n | g-ist-affin \right\}[/mm] mit der Komposition von Abbildungen eine Gruppe bildet.
Ich habe inzwischen die Abgeschlossenheit bzgl. der Komposition von Abbildungen gezeigt, das neutrale Element und das Assoziativgesetz, welches ja allgemein fuer Abbildungen gilt. Nur mit dem Inversen hatte ich ein bisschen Probleme. Kann mir jemand dabei helfen?
Danke schon mal....
Margarita

        
Bezug
affine Gruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 10:11 So 11.07.2004
Autor: Gnometech

Guten Morgen!

Also, mal sehen... für ein beliebiges [mm]g \in A(\IR^n) [/mm] wollen wir zeigen, dass das Inverse wieder affin ist. Die Umkehrabbildung existiert natürlich, weil [mm] g[/mm] eine Bijektion ist.

Wir müssen also zeigen:

[mm] g^{-1}(ax + by) = ag^{-1}(x) + bg^{-1}(y)[/mm] für [mm] x,y \in \IR^n, a,b \in \IR, a+b = 1[/mm]

Wenn man aber nun das [mm] g[/mm] auf beiden Seiten dieser Gleichung anwendet, so steht dort auf der linken Seite:

[mm] g(g^{-1}(ax+by)) = ax+by[/mm]

Und auf der rechten Seite, da [mm] g[/mm] affin ist:

[mm] g(ag^{-1}(x) + bg^{-1}(y)) = a g(g^{-1}(x)) + b g(g^{-1}(y)) = ax + by[/mm]

Die beiden Punkte, von denen wir zeigen wollen, dass sie gleich sind, werden also von [mm] g[/mm] auf den gleichen Punkt abgebildet. Nun ist das [mm] g[/mm] aber injektiv... und damit müssen sie ursprünglich schon gleich gewesen sein. :)

Wie Du siehst ist der Witz dieser Aufgabe nicht, die Umkehrabbildung zu konstruieren - sie existiert schon nach Annahme. Vielmehr ist es wichtig zu zeigen, dass die Umkehrabbildung formal den Bedingungen genügt.

Ich hoffe, es wird auch deutlich, wie man auf diese Lösung kommt: ich habe mir beide Seiten hingeschrieben, von denen ich Gleichheit zeigen will und mir dann überlegt, dass eine Anwendung von [mm] g[/mm] ja nichts zerstört, wegen der Injektivität. Und schon stand's da. :)

Lars

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]