matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Abbildungenaffine Abbildung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Abbildungen" - affine Abbildung
affine Abbildung < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

affine Abbildung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:51 Mo 19.05.2008
Autor: jura

Aufgabe
Eine affine Abbildung α der Ebene À sei gegeben durch die Gleichung
[mm] \vec{x'} [/mm] = [mm] \pmat{ 2 & -1 \\ 6 & 3 } \vec{x}+ \vektor{2\\3}. [/mm]
Zeigen Sie, dass die Bilder aller Punkte von À auf einer Geraden g liegen, und geben Sie
die Gleichung von g an.

also ich hab die abbildung in koordinatenschreibweise umgeformt, erhalte also ein lgs mit 2 zeilen- durch addition erhalte ich dann [mm] 3x_1'+x_2'=9- [/mm] die geradengleichung(?). kann ich das so einfach machen? wenn nicht, wie dann?
vielen dank, tschau.

        
Bezug
affine Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:35 Di 20.05.2008
Autor: leduart

Hallo
ist die Aufgabe richtig abgeschrieben?
Dann solltest du vorrechnen, wie du auf deine Lösung kommst,
Ich komm da nicht drauf.
Was ist die Ebene A?
Gruss leduart

Bezug
                
Bezug
affine Abbildung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:53 Di 20.05.2008
Autor: jura

nein, du hast recht, natürlich fehlte ein minus, die abbildung lautet also [mm] \vec{x'}= [/mm] $ [mm] \pmat{ -2 & -1 \\ 6 & 3 } \vec{x}+ \vektor{2\\3}. [/mm] $


ich hab die abbildung in koordinatenschreibweise umgeformt:
[mm] x_1'=-2x_1-x_2+2 [/mm]
[mm] x_2'=6x_1+3x_2+3 [/mm]

durch addition ergibt sich: $ [mm] 3x_1'+x_2'=9 [/mm]  -die geradengleichung(?).

Bezug
                        
Bezug
affine Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:29 Di 20.05.2008
Autor: Al-Chwarizmi


> nein, du hast recht, natürlich fehlte ein minus, die
> abbildung lautet also [mm]\vec{x'}=[/mm]  [mm]\pmat{ -2 & -1 \\ 6 & 3 } \vec{x}+ \vektor{2\\3}.[/mm]
>  
>
> ich hab die abbildung in koordinatenschreibweise
> umgeformt:
>  [mm]x_1'=-2x_1-x_2+2[/mm]
>  [mm]x_2'=6x_1+3x_2+3[/mm]
>  
> durch addition ergibt sich: $ [mm]3x_1'+x_2'=9[/mm]  -die
> geradengleichung(?).

Ja.


Al-Chwarizmi


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]