matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTopologie und Geometrieaffine Abb. Spiegelung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Topologie und Geometrie" - affine Abb. Spiegelung
affine Abb. Spiegelung < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

affine Abb. Spiegelung: Erklärung
Status: (Frage) beantwortet Status 
Datum: 16:49 Sa 25.08.2012
Autor: heinze

Aufgabe
A=(1|2), B=(6|3), C=(5|1)

Es sei [mm] g=\overline{AB}. [/mm]
Berechne [mm] S_g(C) [/mm] den Bildpunkt von C an g





Aus der Vorlesung ist mir für die Spiegelung bekannt:

[mm] A=\pmat{ a & b \\ b & -a } [/mm]

[mm] a=\bruch{v_1^2-v_2^2}{v_1^2+v_2^2} [/mm] und [mm] b=\bruch{2v_1*v_2}{v_1^2+v_2^2} [/mm]

Und für die Spiegelung gilt: [mm] S_g(C)=A_s(\vec{c}-\vec{a})+\vec{a} [/mm]

Für die Gerade g gilt: g= [mm] \vektor{1 \\ 2}+\lambda (\vektor{5 \\ 1} [/mm]

Wenn ich für a und b in die Matrix einsetze erhalte ich:

[mm] A_s= \bruch{1}{13}\pmat{ 12 & 5 \\ 5 & -12 } [/mm]

[mm] S_g(C)=\bruch{1}{13}\pmat{ 12 & 5 \\ 5 & -12 }\vektor{4 \\ -1}+\vektor{1 \\ 2} =\vektor{\bruch{56}{13} \\ \bruch{58}{13}} [/mm]


Für die Spiegelung an der Ursprungsgeraden gilt [mm] A=\pmat{ cos(2\alpha) & sin(2\alpha) \\ sin(2\alpha) & -cos(2\alpha) } [/mm]

Für die Drehung am Ursprung gilt:
[mm] A_1=\pmat{ 1 & 0 \\ 0 & -1 } [/mm] (Spiegelung an x-Achse)
[mm] A_2=\pmat{ cos\alpha & sin\alpha \\ sin\alpha & -cos\alpha } [/mm] (Spiegelung an Geraden)

[mm] A=A_1*A_2=\pmat{ cos\alpha & -sin\alpha \\ sin\alpha & cos\alpha } [/mm]

Könnt ihr mir bei der Aufgabe erklären, wie ich Spiegelung an Ursprungsgerade und Drehung um den Ursprung beerchnen kann?

Hier kann ich ja sicher nicht das Schema [mm] A_s(\vec{x}-\vec{p})+\vec{p} [/mm] anwenden.

Über Erklärungen wäre ich dankbar!


LG heinze

        
Bezug
affine Abb. Spiegelung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:16 Sa 25.08.2012
Autor: leduart

Hallo
jede lineare Abbildung ist durch die bilder der Basisvektoren bestimmt.
du kannst also einfach überlegen, wo [mm] (1,0)^T [/mm] und [mm] (0,1)^t [/mm] hingespiegelt werden, die Bilder der Basisvektoren sind dann die spalten der Abbildungsmatrix.
meinst du sowas?
Gruss leduart


Bezug
                
Bezug
affine Abb. Spiegelung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:07 Sa 25.08.2012
Autor: heinze

Eben habe ich die Spiegelung eines Punktes an einer Geraden gezeigt.

Nun soll der Punkt an einer Geraden gespiegelt werden, die durch den Ursprung geht um z.B. [mm] \alpha=30 [/mm]

Gilt dann:

[mm] \pmat{ cos(2\alpha) & sin(2\alpha) \\ sin(2\alpha) & -cos(2\alpha) }*\vektor{5 \\ 1} [/mm]

[mm] =\pmat{ cos(60) & sin(60) \\ sin(60) & -cos(60) }*\vektor{5 \\ 1} [/mm]

[mm] =\bruch{1}{2}\vektor{5+\wurzel{3} \\ 5\wurzel{3}-1} [/mm]


Oder z.B. die Drehung im Ursprung um [mm] \alpha=60 [/mm]

[mm] \pmat{ cos(60) & -sin(60) \\ sin(60) & cos(60) }*\vektor{5 \\ 1}= \bruch{1}{2}\vektor{5-\wurzel{3} \\ 5\wurzel{3}-1} [/mm]

Wie würde ich aber vorgehen wenn ich z.B. am Punkt A=(1|2) drehen soll mit dem Winkel [mm] \alpha=60, [/mm] wie mache ich das?

Hier soll nicht mit Einheitsvektoren usw. gerechnet werden sondern nur mit dem was ich hier aus der VL gepostet habe, alels andere würde in der Klausur Punktabzug geben.


LG
heinze

Bezug
                        
Bezug
affine Abb. Spiegelung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:06 Sa 25.08.2012
Autor: leduart

Hallo
bei einer geraden durch 0 ist es einfacher, es ist ja einfach [mm] \vec{a}=0 [/mm]
oder ddu nimmst wie selbst gesagt statt Spiegelung die Drehung um den doppelten winkel der Geraden.
Wenn du um einen beliebigenPunkt [mm] A=(a_1,a_2) [/mm] drehen willstetwa [mm] B=(b_1,b_2) [/mm] verschiebst du A in den 0Punkt, dabei wird aus B [mm] B'=(b_1-a_1,b2-a_2 [/mm] ) du drehst B' um 0 wie bekannt und addierst zu dem gedrehten B'' wieder [mm] (a_1,a_2) [/mm]
also wenn d die drehmatrix ist:
[mm] D*(\vec{b}-\vec{a}) +\vec{A} [/mm]
Gruss leduart

Bezug
                                
Bezug
affine Abb. Spiegelung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:33 Sa 25.08.2012
Autor: heinze

Vielen Dank leduart! Das hat mir weitergeholfen! Also alles so wie bei meinem vorgerechneten Beispiel, nur die Abbildungsmatrix anpassen!

LG
heinze

Bezug
                                        
Bezug
affine Abb. Spiegelung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:59 Sa 25.08.2012
Autor: leduart

Hallo
ja
gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]