matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMaßtheorieäußeres Lebesgue-Maß Vereinigu
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Maßtheorie" - äußeres Lebesgue-Maß Vereinigu
äußeres Lebesgue-Maß Vereinigu < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

äußeres Lebesgue-Maß Vereinigu: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 19:41 Di 30.10.2012
Autor: Pia90

Hallo zusammen,

ich gehe gerade mein Skript zur Vorlesung Analysis III durch und stehe vor ein paar Aussagen, die laut Skript in der Vorlesung bewiesen wurden. Leider kann ich an der Vorlesung nicht teilnehmen, da ich parallel eine weitere habe und versuche es daher nun alleine. Allerdings komme ich nicht wirklich weiter... Es scheint mir irgendwie klar zu sein, aber dennoch schaffe ich es nicht es zu beweisen...

Und zwar gilt für das äußere Lebesgue-Maß: [mm] \lambda [/mm] * [mm] M_1 \cup M_2) [/mm] = [mm] \lambda [/mm] * [mm] (M_1) [/mm] + [mm] \lambda [/mm] * [mm] (M_2) [/mm] , wobei [mm] M_1, M_2 \subset \IR^n [/mm] und es gibt disjunkte offene Mengen [mm] U_1, U_2 \subset \IR^n [/mm] mit [mm] M_1 \subset U_1 [/mm] und [mm] M_2 \subset U_2. [/mm]

Zuvor wurde bereits bewiesen, dass für alle M, N [mm] \subset \IR^n [/mm] folgendes gilt: [mm] \lambda [/mm] * (M [mm] \cup [/mm] N) [mm] \le \lambda [/mm] * (M) + [mm] \lambda [/mm] * (N).
Vom Gefühl her erscheint es mir logisch, dass die Disjunktheit der Mengen nun zu Gleichheit führt... Das ist ja auch in anderen Bereichen so, wie beispielsweise bei der Wahrscheinlichkeitsrechnung.
Aber noch mangelt es mir an einem Beweis...Ich habe mir überlegt die bereits bewiesene Ungleichung zu nutzen und zu zeigen, dass es gerade die Gleichheit ist, wenn [mm] M_1 \cap M_2 [/mm] = [mm] \emptyset [/mm] (bzw. M [mm] \cap [/mm] N = [mm] \emptyset), [/mm] aber dazu fehlen ja irgendwie weitere Informationen...

Das äußere Lebesgue-Maß von M [mm] \subset \IR^n [/mm] haben wir wie folgt definiert [mm] \lambda [/mm] * (M):= [mm] inf{\summe_{j=1}^{\infty} \lambda(Q_j); Q_j beschraenkte Quader, M \subset \bigcup_{j=1}^{\infty} Q_j} \in \IR_{+} \cup {\infty}. [/mm]

Vielleicht kann mir ja jemand bei dem Beweis weiterhelfen oder kennt eine gute Seite, wo dieser verständlich ausgeführt wird?

Vielen Dank schonmal!

        
Bezug
äußeres Lebesgue-Maß Vereinigu: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 20:00 Do 01.11.2012
Autor: Pia90

Niemand eine Idee?

Die Frage ist weiterhin aktuell...

Bezug
                
Bezug
äußeres Lebesgue-Maß Vereinigu: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:21 So 04.11.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
äußeres Lebesgue-Maß Vereinigu: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:20 Fr 02.11.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]