matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis-Sonstigesäquvalente Normen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Analysis-Sonstiges" - äquvalente Normen
äquvalente Normen < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

äquvalente Normen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:35 Sa 01.12.2007
Autor: verkackt

Sei [mm] p:C^{1}[0,1] \to \IR [/mm] mit p(f)=sup |f´(x)| wobei x [mm] \in [/mm] [0,1]
Wir setzen [mm] \parallel [/mm] f [mm] \parallel_{1} [/mm] =p(f)+ |f(0)| und
[mm] \parallel [/mm] f [mm] \parallel_{2} [/mm] =p(f)+sup |f(x)| mit x [mm] \in [/mm] [0,1]
Zeigen Sie, dass  [mm] \parallel [/mm] . [mm] \parallel_{1} [/mm] und [mm] \parallel [/mm] . [mm] \parallel_{2} [/mm] äquivalente Normen auf [mm] C^{1}[0,1] [/mm]  sind.
Bei der ersten Teil der Aufgabe hab ich schon bewiesen, dass p eine Seminorm ist.
Ich weiß dass es für äquivalente Normen gilt:
[mm] \parallel [/mm] . [mm] \parallel_{1} \sim \parallel [/mm] . [mm] \parallel_{2} :\gdw [/mm]
[mm] \exists [/mm] c: [mm] c^{-1} \parallel [/mm] . [mm] \parallel_{1} \le \parallel [/mm] . [mm] \parallel_{2} \le \parallel .\parallel_{1} \forall [/mm] x [mm] \in [/mm] [0,1]
Ich weiß aber nicht, wie ich angangen soll!
Es wäre super, wenn jemand mir einen Tipp geben könnte.
Lg. Ver.

        
Bezug
äquvalente Normen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:46 Sa 01.12.2007
Autor: rainerS

Hallo!

Tipp: es geht um stetige differenzierbare Funktionen, daher gilt:

[mm] f(a) = f(0) + \integral_{0}^{a} {f'(x) dx} [/mm]

Damit kannst du [mm]\sup |f(x)|[/mm] abschätzen.

Viele Grüße
   Rainer

Bezug
                
Bezug
äquvalente Normen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:20 So 02.12.2007
Autor: verkackt

Hi rainer und alle andere
Erstmal danke für deine Antwort, aber ich komme leider irgendwie damit nicht weiter.Ich hab [mm] \parallel [/mm] . [mm] \parallel_{2} [/mm] so umgeformt:
sei sup |f(x)|=|f(a)|  dann gilt  
[mm] \parallel [/mm] . [mm] \parallel_{2}=p(f)+sup|f(x)|=p(f)+f(a)=p(f)+|f(0)+\integral_{0}^{a}{f´(x) dx}| \le p(f)+|f(0)|+|\integral_{0}^{a}{f´(x) dx}| \le [/mm]
[mm] \parallel [/mm] . [mm] \parallel_{1}+... [/mm] das hilft aber nicht weiter denn ich ein c suche mit obigen Eigenschaften!!!!!
Bitte hilf mir weiter.
Lg V.


Bezug
                        
Bezug
äquvalente Normen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:32 So 02.12.2007
Autor: rainerS

Hallo!

> Hi rainer und alle andere
>  Erstmal danke für deine Antwort, aber ich komme leider
> irgendwie damit nicht weiter.Ich hab [mm]\parallel[/mm] .
> [mm]\parallel_{2}[/mm] so umgeformt:
>  sei sup |f(x)|=|f(a)|  

Wird das Supinum immer angenommen?

> [mm]\parallel \cdot \parallel_{2}=p(f)+sup|f(x)|=p(f)+f(a)=p(f)+|f(0)+\integral_{0}^{a}{f´(x) dx}| \le p(f)+|f(0)|+|\integral_{0}^{a}{f´(x) dx}| \le[/mm]

Die Annahme brauchst du gar nicht:

[mm] \| f\|_2 = p(f) + \sup |f(x)| = p(f) + \sup_{a\in[0,1]} \left|f(0)+\integral_{0}^{a}{f'(x) dx}\right| [/mm]

Jetzt wendest du die Dreiecksungleichung an:

[mm] \le p(f) +|f(0)| + \sup_{a\in[0,1]} \left|\integral_{0}^{a}{f'(x) dx}\right| \le p(f) +|f(0)| + \sup_{a\in[0,1]} \integral_{0}^{a}{|f'(x)| dx} [/mm].

So, der Integrand ganz rechts ist immer positiv, also kannst du das Integral abschätzen.

Den Rest solltest Du selbst können.

  Viele Grüße
    Rainer

Bezug
                                
Bezug
äquvalente Normen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:52 So 02.12.2007
Autor: verkackt

Ich kann nur sagen, DANKE

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]